辽宁青城子矿田高家堡子银矿成矿流体特征及地质意义

赵岩1,2,张胜1,吕敬超2,张森1,寇林林2,杨志军3

(1. 中国地质大学(北京),北京 100083; 2. 沈阳地质矿产研究所,辽宁沈阳 110034; 3. 陕西省地质调查中心,陕西西安 710068)

摘 要 高家堡子银矿是产于辽宁青城子矿田内的大型银矿床。利用从该矿床所采集的含银石英脉及脉状铅锌银矿石样品,对矿床成矿流体进行了详细显微观测、激光拉曼光谱、群体包裹体成分及氢氧同位素测试研究。结果表明高家堡子银矿存在水-盐水相及水-气两相流体包裹体;流体包裹体显微观测显示水-盐水相流体包裹体均以温度为 122°C ~ 202°C, 主要集中在 122°C 至 185°C 之间;气-水两相流体包裹体以温度为 1.05% ~ 9.34% NaCl, 拉曼测试显示气相包裹体主要由 H2O、CO2、CH4 等组成,有水-气两相流体包裹体的两种成因。本研究对高家堡子银矿的成因及成矿流体性质具有重要意义。

关键词 流体包裹体,成矿流体,成矿机制,高家堡子银矿,青城子矿田

中图分类号 P618 文献标志码 A 文章编号 0495-5331(2015)03-0441-10

青城子矿田在不到 100 km² 的范围内产出大型铅锌矿、金矿、银矿及十余个小型铁矿床(李基云, 2005)。高家堡子银矿是 20 世纪 90 年代在青城子矿田内发现的一个重要的大型银矿床, 以成矿流体成矿流体领域认识不足。本研究采用高家堡子银矿流体包裹体研究方法, 对其成因及成矿流体性质进行了详细研究, 为高家堡子银矿的成因及成矿流体提供了新的认识。

1 区域地质背景

青城子矿田位于古元古代辽吉裂谷带轴部凹陷带内, 矿田内陆续发现了数十个金、银、铅锌矿床(图 1)。区内出露一套元古代辽河群变质岩系的高家松组、大石桥组及盖县组地层。赋矿围岩主要为大石桥组三段四层、五层的白云变粒岩、硅化大理岩及其与盖县组白云岩接触部位的硅质变粒岩。

区内主要发育两期元古代褶皱构造, 早期为早三叠纪向褶皱; 晚期为中三叠纪向褶皱。两期褶皱叠加部位常形成金、银、铅锌矿床赋矿区。区内发育北东向褶皱, 区域地质构造为中三叠纪向褶皱, 其中北西向三叠纪向褶皱带断层发育情况复杂。本研究利用高家堡子银矿流体包裹体的特征, 对高家堡子银矿的成矿作用进行了详细的分析。
图 1 青城子矿田地质简图（据李荣宗，2005 修改）

Fig. 1 Schematic geological map of the Qingchengzi orefield (modified after Li, 2005)

1 - 辽河群蕊县群; 2 - 辽河群大石桥组; 3 - 辽河群泥岩山组; 4 - 辽河群中层山组; 5 - 早第三系营阳组; 6 - 春梁湖花岗岩; 7 - 春梁湖群长花岗岩; 8 - 岩浆岩; 9 - 断裂; 10 - 正断
1 - Gaixian Formation of Liahe Group; 2 - Dashigou Formation of Liahe Group; 3 - Langxian Formation of Liahe Group; 4 - Li’eryun Formation of Liahe Group; 5 - periplastic granite of late Chinese epoch; 6 - Liangliang epoch granite; 7 - Liangliang epoch pla
giolastic granite; 8 - geological boundary; 9 - fault; 10 - deposit

矿区内元古代和中生代岩浆活动比较强烈，发育古元古代朱家堡子铜质花岗岩，中元古代大顶子、尖山子、方家刘海家岭等铜质花岗岩，中生代双顶沟、新岭中酸性花岗岩。大顶子岩体是辽东裂谷带内出露面积最大的铜质花岗岩，位于朱家堡子花岗岩的北接触带，周围有尖山子、方家刘海家岭等花岗岩小岩体侵入。

2 矿床地质

高家堡子银矿床赋存于大石桥组顶部与盖县组接触带中，位于小佟家堡子金矿山西北，属于高家堡子—杨柏乡铜多金属矿田化带的一部分。矿区出露地层主要是辽河群大石桥组三段上部及盖县组下部岩层。大石桥组三段以白云石大理岩为主，其中为条带状白云石大理岩，上部和下部见白云石大理岩，其中为白云石方解石白云石大理岩。大石桥组三段以白云石大理岩为主，其上部为深部方解石白云石大理岩，中下部夹薄层白云石大理岩。盖县组主要为白云母片岩、白云石云母片岩、白云变粒岩。矿区断裂构造发育，有近东西、北西、东北和近南北向四组，其中与成矿关系密切的近东西向断裂（70°～80°）最为重要。矿区岩相构造主要为晚期形成的东西走向断层带，矿区处于偏北西单斜层带中。矿体呈似层状，近似层状，岩体分布不均。矿化带带状分布于白云石大理岩与白云石方解石大理岩互层的过渡带中。带内白云石呈变质岩，其中大型的片理化带和石墨化现象，矿化带在空间上连续性较好，与地层产状大致一致。矿体带近平行产出，带内的金属（金）矿体呈层状、似层状、岩体分布不均。金主要产于白云石大理岩、白云石大理岩中或白云石中，其中以白云石大理岩、白云石片岩、白云石大理岩、白云石方解石大理岩中最为重要。含硅化粘土岩型为主的金矿石，形成于白云石大理岩之上。有研究认为破碎体为一种金矿石类型，但其含金性不好，可能仅为初级富集矿物元素集合体（王可勇等，2008）。矿区与金矿化有关的围岩蚀变主要有硅化、碳酸盐化，次为绢云母化、绿泥石化，其中硅化作用强度与金矿化强弱呈明显的正相关关系。
3 样品采集与测试方法

本次研究在详细考察高家堡子银矿床地质特征的基础上，选取矿化较好区段采集硅化含银石英脉及脉状铅锌银矿石样品（图 2）8 件。样品经切割、磨制、抛光等程序后，对流体包裹体测温片进行显微镜下岩相学观察。通过系统观察，选择流体包裹体发育的测温片共 6 件进行显微测温测试，并选取直径较大的单个流体包裹体进行激光拉曼测试分析。同时对采集样品中的石英单矿物进行了群体流体包裹体气、液相成分分析。所有测试均在核工业北京地质研究所实验室完成。

包裹体显微测温测试在 LINKHAM THMSG600 型显微热台上进行，可测温度范围为 \(-196 \degree C \sim +

图 2 高家堡子银矿石及共生石英中流体包裹体显微照片

Fig. 2 Photos of ores and photomicrographs of fluid inclusions in paragenesis

quartz from the Gaojiapuzi Ag deposit

a~b - 高家堡子银矿含石英斑岩岩石片；c~f - 石英晶粒中流体包裹体显微照片

a~b - Photos of ore-bearing quartz veins；c~f - photomicrographs of fluid inclusions in host quartz minerals
600°C，实验精度理论值为 0.1°C。流体包裹体盐度通过包裹体的冰点温度计算，据 Bodnar (1993) 计算公式。

包裹体激光拉曼光谱分析仪器为 Renishaw System 1000 激光拉曼光谱仪，采用 514nmAr+ 离子激光器，激光功率 5mW，激光束径大小约为 1 μm，扫描范围 4500 ~ 8500 cm⁻¹，激光宽度 20 μm，积分时间 150s，拉曼峰位移精度为 ±1 cm⁻¹。

包裹体群气相测试仪器型号为 PE: Clarus600, 载气为 N₂，气流速为 25 mL/min，载气压力为 100 kPa。液相离子色谱分析仪型号 Dionex - 500 离子色谱仪，根据 DZ/T 0064.28 - 1993，DZ/T 0064.51 - 1993 标准进行检测。

氢氧同位素测试使用仪器为 MAT - 253 稳定同位素质谱仪。天然水中氢同位素通过锌还原法测定，碳酸盐及氧化物矿物中同位素通过五氟化锂法测定，分析精度为 δ²H = 0.2‰，δ²H/D 为 2‰。

4 岩相学特征

通过详细的显微镜下流体包裹体岩相学观察发现，高家堡子银矿等含银石英脉内流体包裹体较发育。包裹体大小 2 ~ 10 μm 不等，呈椭圆形，多形。长条形及不规则形状产出 (图 2)。根据流体包裹体岩相学及激光拉曼测试结果将流体包裹体分为两类：①纯液相包裹体，多为原生及次生包裹体，大小多在 2 ~ 5 μm 左右，该类包裹体数量较多；②气液两相包裹体。该类包裹体亦有原生、次生及次生包裹体，大小多在 3 ~ 8 μm，与未见大于 10 μm 者。②类包裹体呈椭圆形，卵圆形及不规则形状产出，气液多在 90% ~ 95%，加热后均一致均相。除此之外，高家堡子银矿发育较少含 CO₂、CI 三相及干气矿物相包裹体，其数量极少不具统计意义，本次研究不纳入测试范围。

5 结果与分析

5.1 流体包裹体均一温度及盐度

根据流体包裹体中相学特征及分类，② 气液两相流体包裹体为本次研究测试的对象。实验过程中对包裹体的影响，选择原生与次生流体包裹体进行测试。测试过程中发现样品中存在“岩相学上相互关联”的流体包裹体组合 (迟国祥和卢焕章，2008)。通过观察，该类包裹体组合在大小、气相中均特征极相似，大部分包裹体产出在基本完整的石英脉岩内部。该组合流体包裹体均一温度与冰点温度不相相同，本次研究采取了前人的方法测试与处理数据 (详细见迟国祥和卢焕章，2008)。虽然总体显示测温数据不是很多，但其数据有效性却得到保障。

均一温度测试结果见表 1 及图 3。从表中可见，高家堡子流体包裹体均一温度介于 122°C ~ 202°C 之间，主要集中在 122°C ~ 185°C，属典型的低温成矿流体。根据流体包裹体冰点温度换算得到的温度范围为 1.05 NaCl_m ~ 9.34% NaCl_m (表 1)，盐度与均一温度图解见图 4。根据盐度与均一温度可得成矿流体密度为 0.91 ~ 0.97 g/cm³。说明高家堡子银矿流体密度为一具有低密度的低温成矿流体，盐度分布范围有限，可能反应了后期低温流体的持续加入。

5.2 单个流体包裹体激光拉曼

前已述及，高家堡子银矿流体包裹体中单个流体包裹体的直径不大。故本次单个包裹体激光拉曼光谱测试只能选取部分合适的包裹体进行测试，存在部分测试结果峰值不十分明显的现象。测试结果反映单个流体包裹体气相成分主要为 H₂O、CH₄ 及 CO₂ (图 5)。由于受到包裹体直径大小限制，激光拉曼光谱测试可能仅部分揭示了成矿流体

<table>
<thead>
<tr>
<th>样品编号</th>
<th>均一相态</th>
<th>均一温度</th>
<th>冰点温度</th>
<th>盐度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>范围(℃)</td>
<td>平均(℃)</td>
<td>范围(℃)</td>
<td>平均(℃)</td>
</tr>
<tr>
<td>Dg - 1</td>
<td>122 - 183</td>
<td>147.8</td>
<td>-4.2 ~ -0.6</td>
<td>1.05 ~ 6.72</td>
</tr>
<tr>
<td>Lg - 1</td>
<td>133 - 178</td>
<td>142.3</td>
<td>-4.8 ~ -0.6</td>
<td>1.05 ~ 7.58</td>
</tr>
<tr>
<td>Dg - 2</td>
<td>135 - 182</td>
<td>161.2</td>
<td>-5.9 ~ -0.8</td>
<td>1.40 ~ 9.08</td>
</tr>
<tr>
<td>Lg - 2</td>
<td>131 - 178</td>
<td>157.3</td>
<td>-5.9 ~ -0.9</td>
<td>1.57 ~ 9.08</td>
</tr>
<tr>
<td>Dg - 4</td>
<td>149 - 202</td>
<td>150.6</td>
<td>-6.1 ~ -2.1</td>
<td>3.55 ~ 9.34</td>
</tr>
<tr>
<td>Lg - 4</td>
<td>134 - 199</td>
<td>154.3</td>
<td>-6 ~ -1.4</td>
<td>2.41 ~ 9.21</td>
</tr>
</tbody>
</table>
图3 高家堡子银矿体包裹体均一温度直方图
Fig. 3 Histograms of fluid inclusions homogenization temperature in the Gaojiapuizi Ag deposit

图4 高家堡子银矿体包裹体均一温度盐度图解
Fig. 4 Homogenization temperature-salinity diagram of fluid inclusions in the Gaojiapuizi Ag deposit

的特征。

5.3 群体流体包裹体气相成分

鉴于激光拉曼光谱测试未能全面揭示成矿流体特征，故本次研究采用了群体流体包裹体气相成分测试加以印证。表2、表3分别列出了群体包裹体气相、液相阴阳离子成分测试结果。

结果显示 H₂O 为主要气相成分为成，CO₂次之，CH₄和 N₂含量少，H₂及 CO 为微量。测
试结果印证了单个包裹体激光拉曼光谱测试结果较准确，与流体包裹体岩相学特征吻合。H₂O 为最主
要的气相成分也暗示了低盐度大气降水可能参与了成矿作用。液相阴阳离子成分测试显示 Na⁺、
K⁺、Ca²⁺、Mg²⁺为主要的流体阳离子。Na⁺/K⁺比值稳定且在 2~10 之间，指示了成矿热液类型可能为层控型热液，而不可能为岩浆热液（Roedder，1972，转引自熊晓非等，2014）。Cl⁻、SO₄²⁻为主要成
矿流体的阴离子，有的样品中还检测到了微量的 F⁻

图5 高家堡子银矿体包裹体激光拉曼光谱图
Fig. 5 Laser Raman spectra of fluid inclusions in the Gaojiapuizi Ag deposit

表2 高家堡子银矿包裹体气相成分表（mol%）
Table 2 Chemical compositions of gases in fluid inclusions from the Gaojiapuizi Ag deposit (mol%)

<table>
<thead>
<tr>
<th>样品号</th>
<th>石英</th>
<th>H₂O</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂</th>
<th>CO</th>
<th>CO₂</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₅−2</td>
<td>0.0769</td>
<td>0.1934</td>
<td>0.0521</td>
<td>0.0349</td>
<td>21.88</td>
<td>1.949×10⁷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₆−3</td>
<td>0.0954</td>
<td>0.1354</td>
<td>0.0323</td>
<td>0.0378</td>
<td>5.526</td>
<td>2.197×10⁷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₅−4</td>
<td>0.1047</td>
<td>0.2004</td>
<td>0.0500</td>
<td>0.0174</td>
<td>17.32</td>
<td>2.476×10⁷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.4 氧氢同位素测试

D−O 同位素测试分析的δD 值由实验室测定给定，δ¹⁸O 值通过公式 1000lnδ¹⁸O₁₀⁻＝3.38×
10⁷T⁻³・3.40 计算，其中 T 为绝对温度。经计算的 D−O 同位素结果列入表 4，成矿期石英单矿物δD_{VSMOW} 值介于 −96.4‰～−90.5‰，δ¹⁸O_{VSMOW} 值介于 −4.62‰～−2.64‰。在氢氧同位素图解（图 6）

上，本次研究的样品投点范围在岩浆水下方，向大气降水线偏移。

6 讨论

6.1 成矿流体特征

高家堡子银矿床内发育气液两相水盐流体包裹

本次研究发现所采集样品内存在流体包裹体组合，多个单个流体包裹体具有相近的大小，气液比等特征，并均产出在同一硅英石脉体附近。该特征反映了不同矿物中捕获流体的特征，进一步揭示了流体的形成过程（迟永坤和卢焕，2008）。流体包裹体均一温度在较低温度范围内（122°C ~ 185°C），反映成矿温度较低。成矿流体的盐度在 1.05% ~ 9.34% NaCl，盐度变化连续。低温低盐度的流体包裹体可能反映了成矿水体参与了成矿过程。激光拉曼光谱测试与包裹体气相成分测试也显示成矿流体中 H₂O 为最主要的气相成分。但是低温低盐度流体参与了成矿流体不能简单地说明成矿流体来自大气降水。成矿是一个多种因素有机结合的过程，成矿流体演化也是一个复杂的过程（Deng et al., 2003a, 2003b；王庆飞等，2007；刘平等，2012；李义明等，2013；黄凡等，2014）。包裹体流体中氢同位素分析结果中 Na⁺/K⁺ 比值稳定且介于 2 ~ 10 之间，反映了成矿流体可能不具有岩浆流体的特征。

流体包裹体气相成分主要为 H₂O, CO₂ 气体，含少量的 CH₄, N₂, H₂ 及 CO₂。液相离子主要为 Na⁺, Mg²⁺, Ca²⁺, K⁺, Cl⁻, SO₄²⁻。这反映了成矿流体为低温低盐度的水盐流体，属 H₂O – NaCl – CO₂ – SO₄²⁻ 型成矿流体。

6.2 青城子矿田银锌矿成矿流体来源

根据资料，金银矿床的 δD 值范围在 -48.3% ~ -93%。计算后的 δ¹⁸O 值范围为 -8.36% ~ +4.45%。单纯看数据范围，均在大气降水和变质流体、岩浆流体混合范围之内。因矿田内中生代晚期侵入岩与成矿具有直接关系，有研究（代军等，2006b）认为金银矿床成矿流体只来自于岩浆流体。可以肯定侵入岩对于成矿具有直接贡献，但同时流体包裹体研究表明流体的低盐度大气降水也有参与其中。且有研究对成矿流体中萨拉多内成分的测试中，Na⁺/K⁺ > 4；Na⁺/(Ca²⁺ + Mg²⁺) < 1，均不在（Roedder，1972，引自熊素平等，2014）统计研究的典型岩浆来源流体范围内。

通过与青城子矿田内铅锌矿氢同位素特征和比较（图 6）可以得出：从铅锌矿床成矿流体中岩浆热液成分减少，而大气降水成分增加。该特征反映了成矿流体符合岩浆活动驱动的低温低盐热液成矿流体的特征；由较靠近热源核心的中温铅锌矿向外围低温的银、金矿床，岩浆热液参与成分减少而围岩中低盐度大气降水参与增多。成矿时，来自深源花岗岩的侵位使得整个区域温度提升，形成了一系列对流循环系统，成矿物质从围岩中活化出来并运移，最终在不断与对流循环的大气降水混合并融合。

表 3 青城子银锌矿液相包裹体的化学组成（×10⁻⁶）

<table>
<thead>
<tr>
<th>样品号</th>
<th>F⁻</th>
<th>Cl⁻</th>
<th>NO₃⁻</th>
<th>SO₄²⁻</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Mg²⁺</th>
<th>Ca²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dg-2</td>
<td>17.68</td>
<td>139.2</td>
<td>7.14</td>
<td>1.22</td>
<td>13.54</td>
<td>38.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dg-3</td>
<td>18.27</td>
<td>19.30</td>
<td>6.29</td>
<td>1.07</td>
<td>2.95</td>
<td>13.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dg-4</td>
<td>23.17</td>
<td>74.51</td>
<td>8.83</td>
<td>2.64</td>
<td>7.99</td>
<td>31.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>样品号</th>
<th>F⁻</th>
<th>Cl⁻</th>
<th>NO₃⁻</th>
<th>SO₄²⁻</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Mg²⁺</th>
<th>Ca²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dg-2</td>
<td>17.68</td>
<td>139.2</td>
<td>7.14</td>
<td>1.22</td>
<td>13.54</td>
<td>38.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dg-3</td>
<td>18.27</td>
<td>19.30</td>
<td>6.29</td>
<td>1.07</td>
<td>2.95</td>
<td>13.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dg-4</td>
<td>23.17</td>
<td>74.51</td>
<td>8.83</td>
<td>2.64</td>
<td>7.99</td>
<td>31.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
成统一系统至合适的空间部位沉积成矿。该种成矿模式已经在德兴地区开展了较深入研究，并得到印证（毛景文等，2012）。该类型成矿中成矿流体为岩浆活动驱动热液与大气降水持续反应，最终融合，而非简单的岩浆水与大气降水的混合。

6.3 矿床成矿机制探讨

表 4 青岩子矿田部分矿床氢氧同位素测试结果

<table>
<thead>
<tr>
<th>矿区名称</th>
<th>样品号</th>
<th>δD</th>
<th>δ18O</th>
<th>δ18O (计算)</th>
<th>均一温度</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>高家堡子银矿</td>
<td>Dg-1</td>
<td>-90.9</td>
<td>11.8</td>
<td>-3.87</td>
<td>147.8</td>
<td>本文</td>
</tr>
<tr>
<td>高家堡子银矿</td>
<td>Dg-2</td>
<td>-90.5</td>
<td>9.9</td>
<td>-4.62</td>
<td>161.2</td>
<td>本文</td>
</tr>
<tr>
<td>高家堡子银矿</td>
<td>Lg-2</td>
<td>-90.6</td>
<td>12.2</td>
<td>-2.64</td>
<td>157.3</td>
<td>本文</td>
</tr>
<tr>
<td>高家堡子银矿</td>
<td>Dg-4</td>
<td>-96.4</td>
<td>11.9</td>
<td>-3.52</td>
<td>150.6</td>
<td>本文</td>
</tr>
<tr>
<td>高家堡子银矿</td>
<td>Lg-1</td>
<td>7.31</td>
<td>-7.74</td>
<td></td>
<td></td>
<td>刘先利等，2000</td>
</tr>
<tr>
<td>高家堡子银矿</td>
<td>Lg-2</td>
<td>7.16</td>
<td>-7.83</td>
<td></td>
<td></td>
<td>刘先利等，2000</td>
</tr>
<tr>
<td>小徐家堡子金矿</td>
<td>Kg3-7</td>
<td>13.4</td>
<td>2.09</td>
<td></td>
<td></td>
<td>张森等，2012</td>
</tr>
<tr>
<td>小徐家堡子金矿</td>
<td>Kg2-6-1</td>
<td>16.8</td>
<td>1.31</td>
<td></td>
<td></td>
<td>张森等，2012</td>
</tr>
<tr>
<td>小徐家堡子金矿</td>
<td>Kg3-6-2</td>
<td>13.4</td>
<td>2.09</td>
<td></td>
<td></td>
<td>张森等，2012</td>
</tr>
<tr>
<td>小徐家堡子金矿</td>
<td>N-1</td>
<td>-79.7</td>
<td>10.0</td>
<td>-9.84</td>
<td>145</td>
<td>孙立民等，1997</td>
</tr>
<tr>
<td>小徐家堡子金矿</td>
<td>N-2</td>
<td>-64.7</td>
<td>10.7</td>
<td>-2.82</td>
<td>174</td>
<td>孙立民等，1997</td>
</tr>
<tr>
<td>小徐家堡子金矿</td>
<td>N-3</td>
<td>-62.4</td>
<td>7.31</td>
<td>-7.74</td>
<td>155</td>
<td>孙立民等，1997</td>
</tr>
<tr>
<td>小徐家堡子金矿</td>
<td>N-4</td>
<td>-70.4</td>
<td>7.16</td>
<td>-7.89</td>
<td>155</td>
<td>孙立民等，1997</td>
</tr>
<tr>
<td>小徐家堡子金矿</td>
<td>N-5</td>
<td>-58.5</td>
<td>6.42</td>
<td>-8.63</td>
<td>155</td>
<td>孙立民等，1997</td>
</tr>
<tr>
<td>高家堡子银矿</td>
<td>Kg1-20</td>
<td>16.8</td>
<td>1.11</td>
<td></td>
<td></td>
<td>张森等，2012</td>
</tr>
<tr>
<td>高家堡子银矿</td>
<td>Kg1-16-2</td>
<td>-93.9</td>
<td>10.0</td>
<td>-5.49</td>
<td>117</td>
<td>张森等，2012</td>
</tr>
<tr>
<td>高家堡子银矿</td>
<td>Kg1-20</td>
<td>-86.8</td>
<td>16.8</td>
<td>1.11</td>
<td></td>
<td>张森等，2012</td>
</tr>
<tr>
<td>高家堡子银矿</td>
<td>Kg1-16-2</td>
<td>-93.9</td>
<td>10.0</td>
<td>-5.49</td>
<td>117</td>
<td>张森等，2012</td>
</tr>
<tr>
<td>高家堡子银矿</td>
<td>Kg1-20</td>
<td>-86.8</td>
<td>16.8</td>
<td>1.11</td>
<td></td>
<td>张森等，2012</td>
</tr>
<tr>
<td>高家堡子银矿</td>
<td>Kg1-16-2</td>
<td>-93.9</td>
<td>10.0</td>
<td>-5.49</td>
<td>117</td>
<td>张森等，2012</td>
</tr>
</tbody>
</table>
年龄与早期花岗岩K-Ar法测年结果相吻合，并认为是岩浆活动导致成矿事件发生的。陈江峰等（2004）通过研究高家堡子银矿及辽东裂谷带内其它矿床Pb同位素特征，指出花岗岩为成矿提供热源是可能的。马玉波等（2013）分析了青城子矿田范围内探子沟铅矿及白云金矿的硫、铅同位素特征，通过分析指出矿床成矿物质有来自地层与岩浆的证据。

图6 青城子矿田部分矿床流体包裹体氢氧同位素关系图
Fig.6 δD-δ18O_H2O relationship of fluid inclusions in some deposits in the Qingchengzi orefield

盐度为1.05% NaCl_m-9.34% NaCl_a。流体包裹体气相成分主要为H2O，CO2次之，含少量的CH4和N2，液相主要为Na^+、Mg^2+、Ca^2+、K^+、Cl^-、SO4^2-。成矿流体为低温低盐度的水盐流体。

（2）青城子矿田内金银铅和成矿流体均为低盐度大气降水参与其中的岩浆热液驱动的热液系统；成矿流体并非简单的岩浆水与大气降水的混合。

（3）高家堡子银矿成矿机制为古元古代辽东裂谷初始矿源层富集基础上，中生代岩浆活动驱动的热液系统成矿；岩浆热液在成矿过程中起到了重要的作用。

致谢 野外考察过程中得到了辽宁省地质局与青城子矿业公司相关领导的关心与帮助，成文过程中与中国地质大学（北京）王庆丰教授进行了有益讨论，匿名审稿人对论文提出了诸多建设性意见，在此一并表示衷心感谢！

[注释]

1. 辽宁地质调查局103队、1993. 辽宁凤城青城子矿田高家堡子银矿床详细地质编研说明书。

[References]

7 结论

（1）高家堡子银矿主要发育气液两相及纯液相流体包裹体，均一温度在122℃－185℃之间，流体

[附录参考文献]

449
Characteristics of Ore-Forming Fluids in the GaojiapuZi Ag Deposit of the Qingchengzi Orefield, Liaoning Province and Geological Implications

ZHAO Yan1, ZHANG Peng1, LÜ Jia-chao1, ZHANG Sen2, KOU Lin-lin1, YANG Zhi-jun1

1. China University of Geosciences(Beijing), Beijing 100083;
2. Shenyang institute of Geology and Mineral Resources, Shenyang, Liaoning 110034;
3. Shannxi center of Geological Survey, Xi’an, Shaanxi 710068)

Abstract: The GaojiapuZi silver deposit is a large scale ore occurring in the Qingchengzi ore field, Liaoning Province. During field work in deposit, we collected fluid inclusion samples of three major quartz veins and Pb-Zn-Ag ore veins and made detailed analysis. It includes homogenization temperature tests under microscope, Laser Raman spectroscopy analysis and group contents tests of fluid inclusions. The results show that the pure liquid inclusions and water-NaCl gas-liquid fluid inclusions are the prevalent ones in this deposit. Gas-liquid fluid inclusions play the main role in the study on homogenization temperatures that are mostly between 122°C to 185°C. Salinity values of ore-forming fluids are calculated by inclusions freezing temperature, which range from 1.05 to 9.34 mol% NaCl eq. Laser Raman spectroscopy analysis shows that H2O, CO2 and CH4 are the primary gases in fluid inclusions. Liquid analysis of the fluids also indicates that Na+, Mg2+, Ca2+, K+, Cl− and SO42− are the major ions in mineralisation fluids. In combination with existing H-O isotopes analysis of the ore-field, we suggest that the ore-forming fluids of this orefield came from a hot-fluid system driven by magmatic hydrothermal activity. We also think that the GaojiapuZi Ag deposit is an epithermal deposit where magma hot fluids were superposed on early settled metamorphic marble and magma activity played a vital role in the mineralization.

Key words: fluid inclusions, ore-forming fluid, mineralization mechanism, GaojiapuZi Ag deposit, Qingchengzi orefield, Liaoning.