金属矿产(

钦--杭成矿带中成矿元素锑的物质来源探讨

王永华^{1,2},鲍征宇¹,曾键年¹,龚 敏¹,龚 鹏¹,马振东¹

(1. 中国地质大学(武汉),湖北武汉 430074;2. 成都地质矿产研究所,四川成都 610081)

[摘 要] 钦--杭成矿带是扬子陆块东南缘与华南褶皱系之间的巨型多金属成矿带,仅其中所发现 的锑矿就占我国锑储量的87%。在扬子陆块江南古陆基底及各时期沉积盆地演化过程中,形成了富锑 的地球化学场。矿带内各锑矿床矿石铅同位素组成变化与江南古陆基底及各时期盆地中沉积黄铁矿铅 同位素组成十分相似,仅从赋矿围岩锑元素丰度和锑矿床矿石铅同位素组成两方面的探讨表明,矿带内 锑成矿元素源于基底及盖层中各赋矿围岩。

[关键词] 钦-杭成矿带 锑元素丰度 铅同位素组成 物质来源 [中图分类号] P59 [文献标识码] A [文章编号] 0495-5331 (2012) 04-0742-8

Wang Yong-hua, Bao Zheng-yu, Zeng Jian-nian, Gong Min, Gong Peng, Ma Zhen-dong. Discussion on sources of the element Sb in the Qinzhou-Hangzhou metallogenic belt[J]. Geology and Exploration, 2012, 48(4):0742-0749.

钦-杭成矿带是扬子陆块东南缘与华南褶皱系 之间的巨型多金属成矿带(杨明桂等,1997;贺菊瑞 等,2005;胡肇荣等,2009),仅其中所发现的锑矿 就占我国锑储量的87%(达80万吨以上)(张国林 等,1998)。我国的十个大型锑矿有九个分布在此 矿带,其中湖南锡矿山锑矿是目前世界上唯一的超 大型锑矿。那么,如此大量的Sb元素聚集在该成矿 带中,它们是从哪里来(源)?是什么成矿机制使它 们富集(动)?它们的浓集空间位置在哪里(储)? 这些都是矿床学家一直关心的问题。本文仅从锑元 素的丰度及铅同位素组成的视角,来探讨软-杭成 矿带中锑元素的物质来源。

1 矿带中锑矿床的地质特征

产于钦-杭成矿带中的华南巨型锑矿带,位于 扬子陆块东南缘与华南褶皱系间的过渡带(图1)。 锑矿床的主要赋矿层位有江南古陆的中-晚元古代 的浅变质碎屑岩系、加里东期江南古陆边缘的残留 洋盆,及海西-印支期裂谷盆地中的碳酸盐岩-碎屑 岩建造(刘建明等,1998)。矿床具明显的层控性, 矿体常呈似层状、层状产出。根据锑矿床的构造环 境、赋矿地层、矿体产状、成矿元素组合及矿石类型 等将钦-杭成矿带中锑矿床分为四种类型:沃溪式、 龙山式、锡矿山式及晴隆式(谌锡霖等,1983;陈豫 等,1984;乌家达等,1989;罗献林,1994;崔银亮, 1995;张国林等,1998),见表1。

2 锑元素丰度

某成矿元素的含量在空间区域上的分布是一个 标量场。元素含量在区域空间上的分布随地质历史 的演化而变化,其变化之一是元素含量在区域空间 上集中和分散的行为,这是是否发生成矿作用的标 志。为此,了解锑元素在软-杭成矿带区域空间上 丰度特征,是探讨物质来源的重要基础。

首先从我国东部各构造单元的变质基底中 Sb (As、Au、Hg)元素的丰度特征来看(鄢明才等, 1997)(图2),挟持钦-杭成矿带的扬子陆块与华南 褶皱系这两大构造单元的变质基底中的 Sb 等成矿 元素丰度,明显高于其它构造单元,尤其是泥质类岩 石(页岩、板岩、千枚岩、片岩等)。

其次,从马振东等(马振东等,1998;马振东等, 1999)在江西修水县中-晚元古界双桥山群及震旦 系测制的基岩地球化学剖面中 Sb 等元素在各类岩 石中的含量特征来分析(见表 2):

[[]收稿日期]2011-12-07;[修订日期]2012-02-08;[责任编辑]郝情情。

[[]基金项目]本文为西藏1:20万亚热幅、普兰县幅区域化探项目(1212011121295)资助的成果。

[[]第一作者]王永华(1961年-),男,教授级高工,中国地质大学(武汉)博士生,地球化学专业。E-mail:yonghww@qq.com。

Fig. 1 Sketch map showing distribution of the Qinzhou-hangzhou giant antimony metallogenic belt(modified from Liu *et al.*, 1998 and He *et al.*, 2005)

I-扬子板块;I-1-上扬子板块;I-2-下扬子板块;I-3-浙西地块;I-4-江南古陆;I-5-右江印支褶皱带;II-华南褶 皱系;II-1-华夏古陆;II-2-武夷-云开褶皱带;II-3-武功-褚广褶皱带;III-钦州湾-杭州湾结合带;IV-东南沿海 中生代火山断陷带;V-大别地体;VI-新生代沉积拗陷;VI-1-杭州湾;VI-2-鄱阳湖;VI-3-洞庭湖;I-构造单元界 线;2-断裂;3-钦-杭成矿带;4-矿床;5-省会

I- Yangtze plate;I-1- Upper Yangtze plate;I-2- Lower Yangtze plate;I-3- West Zhejiang block;I-4- Jiangnan ancient block;I-5- Youjiang Indosinian folded belt;II- South China fold system;II-1- Cathaysia;II-2-Wuyi-Yunkai folded belt;II-3-Wugong-Zhuguang folded belt;III- Qinzhou Bay -Hangzhou Bay bonding zone;IV- Mesozoic volcanic fault

belt in Southeast coastal area; V- Dabie terrane; VI- Cenozoic sedimentary depression; VI-1- Hangzhou Bay; VI-2-Poyang Lake; VI-3- Dongting Lake; 1- boundary of tectonic units; 2- fault; 3-Qinzhou-Hangzhou metallogenic belt; 4deposit; 5- provincial capital

第4期

表1 钦-杭成矿带中锑矿床地质特征

Table 1 Geological characteristics of Sb deposits in the Qinzhou-hangzhou metallogenic belt

地质特征	沃溪式	龙山式	锡矿山式	晴隆式
构造环境	江南古岛弧	残留洋盆	裂谷盆地	裂谷盆地
赋矿地层	中-上元古界	震旦系	泥盆系	二叠系
赋矿围岩	浅变质砂岩–板岩	含砾砂质板岩夹硅质条带	灰岩夹硅质岩、黑色页岩夹砂 岩	火山碎屑岩-硅质岩(大厂层)
赋矿构造	裂隙带	顺层间裂隙、裂隙带	顺层间裂隙、裂隙带	顺层间裂隙
矿体产状	网脉状、脉状	似层状、层状、脉状	似层状、层状、脉状	似层状、层状
岩浆活动	矿区及外围无明显岩浆活动	矿区及外围无明显岩浆活动	矿区及外围无明显岩浆活动	矿区及外围无明显岩浆活动
成矿元素组合	Sb-Au(W)	Sb_Au	Sb	Sb F
矿石矿物	辉锑矿、自然金(白钨矿)	辉锑矿、自然金	辉锑矿	辉锑矿、萤石
脉石矿物	石英、碳酸盐、绢云母	石英、碳酸岩、绢云母	石英、方解石	萤石、贵翠(绿色石英)、粘土
典型矿床	湖南沃溪、贵州八蒙	湖南龙山、湖北徐家山	湖南锡矿山、贵州独山	贵州大厂
资料来源	(谌锡霖等,1983:陈豫等,19	084:乌家达等, 1989:罗献林, 1	1994:崔银亮, 1995:张国林等, 1	1998)

(Unit: Au, Hg to 10^{-9} , As, Sb to 10^{-6} , the original data from Yan *et al.*, 1997)

(1) Sb 元素在基底各类岩石中均具有较高的 丰度,是地壳丰度(0.2×10⁻⁶)的8~25 倍,与世界沉 积岩和中国东部沉积岩中同岩类的锑元素丰度相 比,明显富集2~12 倍;

(2) 盖层震旦系继承了 Sb 元素的高丰度,尤其 是在泥质岩(4.40×10⁻⁶)及硅质岩(2.60×10⁻⁶)中, 基底和盖层间成矿元素的这种继承性,示踪着扬子 陆块东南缘的生长历史及其后在大陆地壳的基底上 演化的踪迹;

(3) 据前人(马东升, 2008)研究表明,除了基 底成矿元素丰度显著偏高外,也发育 Sb、Au 成矿元 素的区域亏损带和矿体旁侧的负异常。结合其它地 球化学证据,认为锡矿山超大型锑矿床的成矿物质 主要来源于湘中盆地的元古界基底;

从以上区域锑元素的丰度特征分析,钦-杭成 矿带中的华南 Sb 矿带赋存于富锑的地球化学场 (锑的丰度是地壳丰度的几倍~几十倍)中,它是扬 子陆块与华南褶皱系之间多期多次作用的结果,是 形成巨型锑矿床的有利条件。但仍不是决定因素, 决定因素是 Sb 元素在初步富集的矿源层中有无活 化、迁移、沉淀的物理化学机制,也就是 Sb 元素活 化、迁移、沉淀的地质营力和赋存空间("运"和"储" 将另文论述)。

Table 2	Abundan	ce of S	b in	various	rocks	of the	Sinian
and Sh	uanggiao	Group	at X	Kiushui ,	Jiang	xi Prov	ince

地层	岩类	\mathbf{Sb}	As	Au	Hg	资源来源	
	碎屑岩(8)	0.40	1.8	1.70	3		
修水震旦	泥质岩(8)	尼质岩(8) 4.40 20.9 2.00	50	(马振东			
系(Z)	硅质岩(2)	2.60	13.7	2.40	494	等, 1999)	
	碳酸盐岩(3)	1.50	15.6	0.40	25		
	碎屑岩(4)	5.00	9.3	1.10	39		
弱西北修水 双 桥山群(Pt₂)	泥质岩(3)	3.56	10.0	1.40	115	(马振东 等,1998)	
	凝灰质泥岩(1)	3.90	9.6	1.00	4	_ ,,	
	砂岩	0.0n	1	n	30	(Turekian	
世界沉积岩	页岩	1.5	13	n	400	et al. ,	
	碳酸盐岩	0.2	1	n	40	1961)	
	砂岩	0.43	5.0	1.0	15		
中国东部	泥(页)岩	0.58	7.8	1.4	27	(迟清华 等,2007)	
	碳酸盐岩	0.24	3.2	0.47	18	,	
大陆上均	0.2	1.5		1.8	(Taylor et al. , 1985)		

注:括号内为样品数; n 为量级估计值; Sb、As 单位: ×10⁻⁶; Au、 Hg 单位: ×10⁻⁹。

3 铅同位素示踪

3.1 铅同位素示踪物源基本原理

对于矿床物质来源探讨的另一个有效途径是铅 同位素示踪。根据普通铅的原理:在普通铅矿物 (方铅矿、黄铁矿、钾长石等)形成以后,其铅同位素 组成基本保持不变,能较好地反映普通铅矿物物源 的 U、Th、Pb 丰度特征,为此常用来示踪物源。

众所周知,成矿元素浓集的直接物源,不外于岩 浆源和沉积矿源层。用岩浆作用过程中形成的造岩 矿物钾长石中微量铅(Pb²⁺+Al³⁺→K⁺+Si⁴⁺类质同像 置换)同位素组成代表岩浆源。用矿源层中的似层 状黄铁矿(其显微草莓状结构,黄铁矿 Co/Ni>>1) 代表沉积作用环境下的铅同位素组成。为此在矿区 配套地采集各具代表性的普通铅矿物就能较客观地 示踪成矿元素的物质来源。

前人(马振东等, 1999)在对江西德安曾家垅锡 多金属矿田各成矿元素的物源探讨中(图3),列出 了在隐伏二云母碱长花岗岩接触带矽卡岩型锡矿床 及其外围的震旦系中层状、似层状张十八铅锌矿的 铅同位素组成(见表3)。从铅同位素组成特征来 看,锡矿和铅锌矿明显有别,一个富放射成因铅, 其²⁰⁶ Pb/²⁰⁴ Pb、^{207Pb}/²⁰⁴ Pb 比值高,另一个贫放射成因 铅,该比值相对较低。锡矿和二云母碱长花岗岩、铅 锌矿和震旦系沉积黄铁矿铅同位素组成的两两对应 的现象不是偶然的,而是示踪各自不同的源区,Sn 元素主要来自二云母碱长花岗岩,而 Pb、Zn(Ag)等 矿质主要源于基底和赋矿围岩。

图 3 曾家垅锡多金属矿田金属元素面状分带 (据马振东等, 1999)

Fig. 3 Planar zoning of metallic elements in the Zengjialong tin-polymetallic ore field (after Ma *et al.*, 1999)

1-Sn-As 带(I);2-Ag-Pb-Zn 带(II);3-Sb-Au 带(III);4-F-Ba 带(IV);5-隐伏花岗岩;6-花岗岩脉;7-分带线;8-地质界线;9-震旦系;10-寒武系;11-奥陶系

1-Sn-As belt(I);2-Ag-Pb-Zn belt(II);3-Sb-Au belt(III);4-F -Ba belt(IV);5-hidden granite;6-granite dikes;7- zoning boundary;8-geological boundary;9-Sinian System;10- Cambrian System; 11- Ordovician System

3.2 江南古陆基底及其东南缘各时期盆地环境 的铅同位素组成演化特征

江南古陆基底及其东南缘各时期沉积盆地中的 沉积黄铁矿的铅同位素组成特征,反映了扬子陆块 南缘各时期的沉积环境(马振东等,1996):

(1)中元古界泥砂岩质复理石建造中沉积黄铁
矿的铅同位素组成较稳定,²⁰⁶ Pb/²⁰⁴ Pb:17.693~
18.073,²⁰⁷ Pb/²⁰⁴ Pb:15.503~15.728,²⁰⁸ Pb/²⁰⁴ Pb:
37.918~38.388,代表了扬子陆块当时的物源环境,
Th/U比值稳定在 4.61~5.05 之间;

(2) 震旦纪扬子陆块南缘处于滨海相碎屑岩及 大陆冰碛岩或冰水沉积环境,其物质来源主要来自 表3 江西曾家垅锡多金属矿田铅同位素组成

Table 3 Lead isotope composition of the Zeng-Jialong tin-polymetallic ore field, Jiangxi Province

采样位置	地质产状	测定对象	²⁰⁶ Pb/ ²⁰⁴ Pb	$^{207}{ m Pb}/^{204}{ m Pb}$	$^{208}\mathrm{Pb}/^{204}\mathrm{Pb}$	资料来源	
曾家垅锡矿	矽卡岩型锡矿	黄铁矿 (1)	21.046	16.608	38.366		
	二云母碱长花岗岩	长石(1)	20.717	15.930	38.746	江四 916 地质队,	
	黑云母二长花岗岩	长石(1)	29.852	21.450	39.948	1980 ©	
	青口不用门机小出去日小	黄铁矿 (3)	17.780	15.610	38.023		
张十八铅锌矿	震旦糸锏门组砂岩中层状、	闪锌矿(1)	17.936	15.579	37.896	(卢树东,2005)	
	以压扒钳针到	方铅矿(3)	17.196	15.562	37.664		
泥盆系	铜陵泥岩	黄铁矿 (1)	18.077	15.637	38.480		
奥陶系	鄂南瘤状灰岩	黄铁矿 (1)	18.222	15.662	38.333		
	滁县泥条白云质灰岩	黄铁矿 (1)	21.584	16.045	38.720		
	赣北灰岩	黄铁矿 (1)	19.238	15.769	38.660		
	皖南钙质页岩	黄铁矿 (1)	18.822	15.765	39.130	(马振东等,1996)	
寒武系	赣北灰岩	黄铁矿 (1)	18.556	15.815	38.754		
	皖南泥灰岩	黄铁矿 (1)	18.481	15.957	38.944		
	皖南泥条灰岩	黄铁矿 (1)	18.396	15.760	38.680		
	皖南碳质页岩	黄铁矿 (1)	19.091	15.708	38.560		
	灯影组硅质层	黄铁矿 (1)	17.866	15.596	37.606		
江西修水雪日系(7)	陡山沱组灰岩透镜体	黄铁矿 (1)	17.976	15.598	38.059	(卫堤左笙 1000)	
江西修小辰旦尔(Z)	南沱组冰碛砾岩	黄铁矿 (1)	17.992	15.491	37.824	(司派示寺, 1999)	
	硐门组石英砂岩	黄铁矿 (1)	17.849	15.574	37.742		
きタートコワはチュートヨピ	杂砂岩	黄铁矿 (1)	17.982	15.600	37.960		
₽፬ 40 /X 竹丫 凵 石干	粉砂质板岩	黄铁矿 (1)	18.073	15.714	38.196	(卫堐左笙 1006)	
佗歯上溪群	黑色板岩	黄铁矿 (1)	17.693	15.503	37.918	(习加(示守, 1990)	
吭用上/关杆	千枚状细砂岩	黄铁矿 (1)	17.973	15.728	38.388		

注:括号内为样品数。

中元古基底,为此其铅同位素组成(及 Th/U 比值) 继承了基底物源的特征;

(3)至早寒武世江南古陆东南缘沉积环境发生 了变化,为残留洋盆地,水体较深,含氧度很低,陆源 易溶的 $(UO_2)^{2+}$ (铀铣)大量进入海盆,被碳泥质吸 附,造成了寒武系的硅泥质岩、硅质岩普遍含较高 的铀,为此放射成因的铅明显增大,²⁰⁶ Pb/²⁰⁴ Pb: 18.396~21.584,²⁰⁷ Pb/²⁰⁴ Pb: 15.527~16.045, ²⁰⁸ Pb/²⁰⁴ Pb: 38.180~39.130,而 Th/U 比值下降为 0.35~3.66。

3.3 华南各类型的锑矿床的铅同位素组成特征

以上讨论了江南古陆基底及其东南缘各时期盆 地环境的铅同位素组成的演化特征,再结合赋存于 其中的华南各类型的锑矿床的铅同位素组成(表 4),可以用来对其矿质来源进行探讨。

(1) 赋存于基底中-上元古界浅变质砂-板岩 中的沃溪式锑(金)、锑矿其铅同位素组成相对稳定 (Th/U 比值4.5~5),属贫放射性成因铅同位素组 成,²⁰⁶Pb/²⁰⁴Pb:17.539~18.481,²⁰⁷Pb/²⁰⁴Pb:15.536 ~15.739,²⁰⁸Pb/²⁰⁴Pb:38.027~38.999,与基底地层 沉积黄铁矿铅同位素组成一致。 (2) 龙山式锑(金) 矿赋存在沉积盖层震旦系 中,锑矿石的铅同位素组成以低放射性成因铅为 主,²⁰⁶ Pb/²⁰⁴ Pb:17.022~17.997,²⁰⁷ Pb/²⁰⁴ Pb:15.426 ~15.745,²⁰⁸ Pb/²⁰⁴ Pb:37.651~38.233。但赋存于 上震旦统湖北徐家山锑矿中有一组富铀放射性成因 的矿石铅同位素组成,²⁰⁶ Pb/²⁰⁴ Pb:18.874~19.288 (平均19.104),²⁰⁷ Pb/²⁰⁴ Pb:15.708~15.805(平均 15.745),²⁰⁸ Pb/²⁰⁴ Pb:38.642~39.001(平均 38.793),其 Th/U 比值平均为3.57。

(3)无论是赋存于泥盆纪碳酸盐岩—碎屑岩中的锡矿山式锑矿床,还是贵州独山锑矿床,其矿石铅同位素组成比较复杂,明显可分为三组(图4):

① 贫 放 射 性 成 因 组:²⁰⁶ Pb/²⁰⁴ Pb: 17.723 ~ 17.851,²⁰⁷ Pb/²⁰⁴ Pb: 15.504 ~ 15.583,²⁰⁸ Pb/²⁰⁴ Pb: 37.609 ~ 38.242(图 4 中 A 区域);

②富放射性成因组:²⁰⁶ Pb/²⁰⁴ Pb: 18.636~
18.874,²⁰⁷ Pb/²⁰⁴ Pb: 15.682~15.818,²⁰⁸ Pb/²⁰⁴ Pb: 38.549~39.110(图4中C区域);

③过渡组:²⁰⁶ Pb/²⁰⁴ Pb: 18. 146 ~ 18. 474, ²⁰⁷ Pb/²⁰⁴ Pb:15.583 ~ 15.662,²⁰⁸ Pb/²⁰⁴ Pb: 38.338 ~ 38.494(图4中B区域)。

表4 华南锑矿带中典型矿床铅同位素组成

Table 4 Lead isotopic composition of typical deposits in the antimony metallogenic belt of South China

矿床类型	采样位置	测定对象	$^{206}\mathrm{Pb}/^{204}\mathrm{Pb}$	$^{207}{ m Pb}/^{204}{ m Pb}$	$^{208}{ m Pb}/^{204}{ m Pb}$	资料来源	
沃溪式	湖南沃溪锑金矿	黄铁矿(2)	18.481	15.695	38.823	(四款扶笠 1004)	
		方铅矿 (1)	17.882	15.739	38.999	(夕脉怀守,1994)	
	贵州八蒙锑矿	辉锑矿(5)	17.539	15.536	38.027	(张绮玲, 1994)	
	贵州摆吉锑矿	辉锑矿(2)	17.910	15.649	38.397	(陈永科等,2004)	
	湖南龙山锑金矿	辉锑矿(5)	17.675	15.508	38.298	(源化学 1000)	
+		5 号脉方铅矿(2)	17.022	15.426	37.651	(朱华央,1969)	
ル山式	湖北徐家山锑矿	B 组辉锑矿(10)	17.997	15.626	38.233	(油能亚竿 2008)	
		A 组辉锑矿(6)	19.104	15.745	38.793	(ル肥平寺, 2008)	
	湖南锡矿山锑矿	辉锑矿(2)	18.636	15.818	38.825	(陶琰等,2001)	
		辉锑矿(4)	18.290	15.662	38.549	(胡雄伟, 1995)	
		辉锑矿(3)	18.237	15.537	38.338		
		辉锑矿(1)	17.851	15.614	38.242	(刘文均,1992)	
		辉锑矿(1)	18.874	15.790	39.424		
锡矿山式	贵州独山半坡锑矿	辉锑矿(5)	18.474	15.678	38.480		
		辉锑矿(4)	17.723	15.504	37.609		
		黄铁矿 (1)	18.779	15.764	39.110	(出纪宣 1005)	
	贵州独山巴年锑矿	辉锑矿(1)	18.725	15.682	38.553	(
		辉锑矿(1)	18.146	15.583	38.221		
	贵州独山甲碑锑矿	辉锑矿(1)	18.197	15.720	38.494		
+1 + +							

括号内为样品数。

从以上各类型锑矿床矿石铅同位素组成的特征 来看,随着赋矿围岩从基底到盖层(震旦系-泥盆 系)的变化(表3),铅同位素组成由简单、稳定(贫 放射性成因铅为主)到复杂、多变(富放射性成因铅 同位素组成),这一特征与江南古陆基底及各时期 沉积盆地的环境(制约物源)十分相似。这种趋势, 不是偶然的,它示踪着锑成矿物质来源于江南古陆 基底及盖层中各赋矿围岩。由于扬子陆块东南缘在 各期构造—岩浆作用下(尤其是燕山晚期)(刘建明 等,1998),无论是自下而上的深源成矿热卤水,还 是自上而下经深部循环的大气降水,都从基底及盖 层中各赋矿围岩内萃取经初步富集的锑等元素(马 东升,2008),在一定的物理化学条件下,沉淀在层 间裂隙、不整合面及构造裂隙中,形成了华南巨型锑 矿带。

4 结论

(1) 钦-杭成矿带中无论是江南古陆基底还是 盖层中各赋矿层位,均有较高的锑元素的丰度,比地 壳克拉克值高1~2个数量级,它为形成华南锑矿带 提供充足的物源条件;

(2)从江南古陆基底到盖层各盆地的沉积黄铁 矿铅同位素组成与赋存于其中的各类锑矿床矿石铅 铅同位素的变化特征来看,它们具有明显的相似性, 这一信息示踪着锑等成矿元素的物源来自于江南古

陆基底及其后演化的沉积盆地。

致谢 本文成文期间得到了成都地质矿产研究 所和中国地质大学(武汉)地球化学研究所各位老 师的大力帮助,在此一并表示衷心的感谢。

[注释]

 江西省 916 地质队. 1986. 江西德安曾家垅锡矿地质特征(内部 资料)

[References]

- Chen Yong-ke,Li Kun,You Lian-qiang. 2004. A preliminary analysis
 on genesis of Baiji antimony ores deposit, Leigongshan, Guizhou
 [J]. Guizhou Geology, 21(1): 41-47(in Chinese with English
 abstract)
- Chen Yu, Liu Xiu-cheng, Zhang Qi-hou. 1984. A tentative discussion on the genesis of the Dachang antimony deposit, Qinglong county, Guizhou province[J]. Mineral Deposits, 3(3): 1-12(in Chinese with English abstract)
- Chi Qing-hua, Yan Ming-cai. 2007. Handbook of elemental abundance data for applied geochemistry [M]. Beijing: Geological Publishing House: 1-148(in Chinese)
- Cui Yin-liang. 1995. Ore-forming material sources of the Dushan antimony deposit in Guizhou province [J]. Geological Exploration for Non-Ferrous Metals, 4(4): 193-199(in Chinese with English abstract)
- He Jü-rui, Wang Ai-guo, Rui Xing-jian, Li Chun-hai. 2005. Discussion on mineralizing process in east integrating zone of Qinzhou Bay and Hangzhou Bay[C]. Earth science technology forum of six provinces and one municipality in East China, 2005. Nanjing, Jiangsu prov-

ince, China, Jiangsu Geological Institute: 8-13 (in Chinese with English abstract)

- Hu Xiong-wei. 1995. The geological setting and genisis of Xikuangshan super-giant antimony deposits, Hunan, China [D]. Beijing: Chinese Academy of Geological Sciences:1-173(in Chinese with English abstract)
- Hu Zhao rong, Deng Guo hui. 2009. Tectonic characteristics of the Qinzhou-Hangzhou joint belt[J]. Journal of East China Institute of Technology(Natural Science), 32(2): 114-122(in Chinese with English abstract)
- Liang Hua-ying. 1989. Ore material sources of the Longshan goldantimony deposit[J]. Mineral Deposits, 8(4): 39-48(in Chinese with English abstract)
- Liu Jian-ming, Gu Xue-xiang, Liu Jia-jun, Zheng Ming-hua. 1998. Giant metallogenic Sb belt in south China and its constraints[J]. Chinese Journal of Geophysics, 41(Suppl): 206-215(in Chinese with

English abstract)

- Liu Wen-jun. 1992. Genesis of some antimony deposits in southern China[J]. Journal of Chengdu College of Geology, 19(2): 10-19(in Chinese with English abstract)
- Lu Shu dong. 2005. Geological characteristics and metallogenetic resource of Zhangshiba Pb–Zn deposit in Pengshan orefield[D]. Beijing: China University of Geoscience (Beijing): 1–78 (in Chinese with English abstract)
- Luo Xian-lin, Yi Shi-jun, Liang Jin-cheng. 1984. Genesis of Woxi W-Sn deposit in the west of Hunan province [J]. Geology and Prospecting, 20(7): 1-10(in Chinese)
- Luo Xian-lin. 1994. Geological characteristics of Precambrian antimony metallogeny in Hunan[J]. Journal of Guilin College of Geology, 14 (4): 335-349(in Chinese with English abstract)
- Ma Dong-sheng. 2008. Metallogenetic characteristics of the important deposits in South China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 209-217(in Chinese with English abstract)
- Ma Zhen-dong, Li Yan-xia, Shan Guang-xian. 1999. Geochemical study on sources and enrichment mechanism of the reformed and super imposed sedimentary deposits [J]. Mineral Deposits, 18(2): 110-120(in Chinese with English abstract)
- Ma Zhen-dong, Shan Guang-xiang. 1996. The background of regional lead isotopic compositions and its application in the lower and middle reaches of the Yangtze river and neighbouring areas[J]. Acta Geologica Sinica,70(4): 324-334(in Chinese with English abstract)
- Ma Zhen-dong, Zhang Ben-ren, Jiang Jing-ye, Shan Guang-xiang, Xu Qi -dong. 1998. The background of mineralizing element abundances of the basement and granite in the middle-lower reaches of the Yangtze river and adjacent area[J]. Acta Geologica Sinica, 72(3): 267-275(in Chinese with English abstract)
- Shen Neng-ping, Peng Jian-tang, Yuan Shun-da, Zhang Dong-liang, Hu Rui-zhong. 2008. Lead isotope compositions and its significance for ore-forming material of the Xujiashan antimony deposit, Hubei province[J]. Acta Mineralogica Sinica, 28(2): 169-176(in Chinese with English abstract)
- Shen Xi-lin, Jiang Yun-hang, Li Shi-yong, Liao Hong-zhen. 1983. A preliminary study on the origin of the Xikuangshan antimony deposit in Hunan[J]. Geological Review, 29(5): 486-492(in Chinese with English abstract)
- Tao Yan, Gao Zhen-min, Jin Jing-fu, Zeng Ling-jiao. 2001. The origin of ore-forming fluid of Xikuangshan-type antimony deposits in central Hunan province [J]. Geology-Geochemistry, 29(1): 14-20 (in Chinese with English abstract)
- Taylor S. R. , McLennan S. M. . 1985. The continental crust: its composition and evolution $[\,J\,]$. Rev. Geophys. , $33\,(2)$: 241–265
- Turekian K K, Wedepohl K H. 1961. Distribution of the elements in some major units of the earth's crust[J]. Geological Society of America Bulletin, 72(2): 175–192
- Wu Jia-da, Xiao Qi-ming, Zhao Ning-qiu. 1989. China antimony deposit. Chinese deposits (Volume One) [M]. Beijing: Geological Publishing House: 338-413 (in Chinese)
- Yan Ming-cai, Chi Qing-hua. 1997. The chemical compositions of crust

and rocks in the eastern part of China[M]. Beijing: Science Press: 1-292(in Chinese)

- Yang Ming-gui, Mei Yong-wen. 1997. Characteristics of geology and metatllization in the Qinzhou - Hangzhou paleoplate juncture [J]. Geology and Mineral Resources of South China, 4(3): 52-59(in Chinese with English abstract)
- Zhang Guo-lin, Yao Jin-yan, Gu Xiang-ping. 1998. Time and spatial distribution regularities and deposit types of antimony in china[J]. Mineral Resources and Geology, 12(5): 306-312(in Chinese with English abstract)
- Zhang Qi-ling. 1994. Typomorpic characteristics of Bameng stibnite and genesis of the ore deposit[J]. Acta Petrologica et Mineralogica, 13 (4): 362-369(in Chinese with English abstract)

[附中文参考文献]

- 陈永科,李 坤,游连强.2004. 贵州雷公山地区摆吉锑矿矿床成因 探讨[J].贵州地质,21(1):41-47
- 陈 豫,刘秀成,张启厚.1984.贵州晴隆大厂锑矿床成因探讨[J]. 矿床地质,3(3):1-12
- 谌锡霖,蒋云杭,李世永,廖洪震.1983. 湖南锡矿山锑矿成因探讨 [J].地质论评,29 (5):486-492
- 迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社: 1-148
- 崔银亮.1995. 贵州独山锑矿床成矿物质来源研究[J]. 有色金属矿 产与勘查,4(4):193-199
- 贺菊瑞,王爱国,芮行健,李春海.2005. 钦—杭结合带东段成矿作用 初探[C].2005 年华东六省一市地学科技论坛. 中国江苏南 京:江苏省地质学会:8-13
- 胡雄伟. 1995. 湖南锡矿山超大型锑矿床成矿地质背景及矿床成因 [D]. 北京:中国地质科学院:1-173
- 胡肇荣,邓国辉.2009. 钦-杭接合带之构造特征[J]. 东华理工大学 学报(自然科学版),32(2):114-122
- 梁华英.1989. 龙山金锑矿床成矿物质来源研究[J]. 矿床地质,8 (4):39-48

刘建明,顾雪祥,刘家军,郑明华.1998. 华南巨型锑矿带的特征及其

制约因素[J]. 地球物理学报,41 (增刊): 206-215

- 刘文均.1992. 华南几个锑矿床的成因探讨[J]. 成都地质学院学报, 19(2):10-19
- 卢树东. 2005. 江西彭山矿田张十八铅锌矿地质特征与成矿物质来源 研究[D]. 北京:中国地质大学(北京):1-78
- 罗献林. 1994. 湖南前寒武系锑矿床的成矿地质特征[J]. 桂林冶金 地质学院学报,14(4): 335-349
- 罗献林,易诗军,梁金城.1984. 论湘西沃溪金锑钨矿床的成因[J]. 地质与勘探,20(7):1-10
- 马东升.2008. 华南重要金属矿床的成矿规律——时代爆发性、空间 分带性、基底继承性和热隆起成矿[J]. 矿物岩石地球化学通 报,27 (3): 209-217
- 马振东,单光祥.1996. 长江中下族及邻区区域铅同位素组成背景及 其应用[J]. 地质学报,70(4):324-334
- 马振东,李艳霞,单光祥.1999. 沉积叠加改造型矿床的物源及富集 机制的地球化学研究[J]. 矿床地质,18(2):110-120
- 马振东,张本仁,蒋敬业,单光祥,徐启东.1998. 长江中下游及邻区 基底和花岗岩成矿元素丰度背景的研究[J]. 地质学报,72 (3): 267-275
- 沈能平,彭建堂,袁顺达,张东亮,胡瑞忠.2008.湖北徐家山锑矿床 铅同位素组成与成矿物质来源探讨[J].矿物学报,28(2):169 -176
- 陶 琰,高振敏,金景福,曾令交.2001. 湘中锡矿山式锑矿成矿物质来源探讨[J]. 地质地球化学,29 (1): 14-20
- 乌家达,肖启明,赵宁耿.1989. 中国锑矿床. 中国矿床(上)[M]. 北 京,地质出版社: 338-413
- 鄢明才,迟清华.1997.中国东部地壳与岩石的化学组成[M].北京: 科学出版社:1-292
- 杨明桂,梅勇文.1997. 钦—杭古板块结合带与成矿带的主要特征 [J].华南地质与矿产,4(3):52-59
- 张国林,姚金炎,谷相平.1998. 中国锑矿床类型及时空分布规律 [J].矿产与地质,12(5):306-312
- 张结玲. 1994. 八蒙辉锑矿的标型特征与矿床成因[J]. 岩石矿物学 杂志,13(4): 362-369

Discussion on Sources of the Element Sb in the Qinzhou-Hangzhou Metallogenic Belt

WANG Yong-hua^{1,2}, BAO Zheng-yu¹, ZENG Jian-nian¹, GONG Min^{1,2}, GONG Peng¹, MA Zhen-dong¹

(1. China University of Geosciences (Wuhan), Wuhan, Hubei 430074;

2. Chengdu Institute of Geology and Mineral Resources, Chengdu, Sichuan 610081)

Abstract: The great Qinzhou-Hangzhou polymetallic belt is located between the southeast margin of the Yangtze block and the South China fold system. The antimony deposits found in this belt account for about 87% of the total antimony reserves in China. As for its geological background, during the evolution of the southern Yangtze block and the periods of ancient continental basement sedimentary basins, the antimony-rich geochemical field was formed. Lead isotopic composition of antimony deposits in the metallogenic belt is very similar to that in the Jiangnan ancient land basement and sedimentary pyrite in the basins of varied periods. Evidence from abundance of the element Sb in ore-rock and lead isotopic composition of antimony deposits suggests that the sources of Sb element in the metallogenic belt are the ore-bearing country rocks of the basement and the cover.

Key words: Qinzhou-Hangzhou metallogenic belt, abundance of Sb element, lead isotopic composition, material sources