地球化学(

江苏观山高硫型铜铅金矿床稳定同位素 地球化学和成因意义

梁业恒^{1,2,3}, 孙晓明^{1,2,3}, 翟 伟^{1,2}, 马 春⁴,

吴志强⁴、 丁存根⁴、 王堂喜⁴

(1.中山大学海洋学院,广州 510275;2.广东省海洋资源与近岸工程重点实验室,广州 510275;
3.中山大学地球科学系,广州 510275;4.华东有色地质矿产勘查开发院,南京 210007)

[摘 要] 江苏观山铜铅金矿是典型的高硫型浅成低温热液矿床。本文通过对观山铜铅金矿床氢、 氧、碳、硫同位素组成的研究,探讨成矿溶液中水、碳、硫的来源以及成矿溶液的演化。同位素测定显示 石英流体包裹体水的 $\delta D = -90\% \circ -70\% \circ, \delta^{18}O_{\pi} = -8.9\% \circ -1.1\% \circ; 热液方解石流体包裹体水的 \delta D = 90‰ \circ -81‰ o, \delta^{18}O_{\pi} = 0.1‰ \circ 2.3\% o$ 。氢氧同位素组成说明成矿流体主要为与围岩进行过水岩反应的 循环大气降水,不排除有少量岩浆水的加入。黄铁矿与黄铜矿矿石的 $\delta^{34}S_{v-CDT} = 5.8\% \circ -9.9\% o$,平均值 为 7.6‰ o,表明该矿成矿过程中的 S 很可能是沉积岩来源的硫与岩浆岩来源硫的混合。矿床中可见较多 的重晶石等硫酸盐矿物,这种高价态硫的矿物的存在显示其成矿溶液具有富集³⁴ S 的特征,加上成矿过 程中流体的沸腾导致 H₂S 等气体大量逸出和残余岩浆流体富集³⁴ S,使得沉淀的黄铁矿、黄铜矿等硫化 物同样具有富集³⁴ S 的特征; 热液方解石碳同位素 $\delta^{13}C_{5解G} = -4.1\% \circ -6.1\% o$,平均为 $\delta^{13}C_{5RG} = 1.3\% o$, 显示其中的 C 主要来源于流体对流循环过程中对基底岩石中碳酸盐地层的溶解。

[关键词]稳定同位素 浅成低温热液矿床 观山铜铅金矿 成矿溶液

[中图分类号]P618.51 [文献标识码]A [文章编号]0495-5331(2010)04-0698-07

Liang Ye-heng, Sun Xiao-ming, Zhai Wei, Ma Chun, Wu Zhi-qiang, Ding Cun-gen, Wang Tangxi. Stable isotopic geochemistry and genesis of the Guanshan high-sulphidation type Cu-Pb-Au deposit in Jiangsu Province [J]. Geology and Exploration, 2010, 46 (4):0698-0704.

观山铜铅金矿位于江苏省南京市溧水县晶桥 镇,自1957年被发现以来,对该矿区的地质矿产勘 探及开发工作一直没有中断。一些学者对其成矿区 域地质、矿床控矿特点、成矿特征等方面进行了一系 列的研究工作,提出该矿为火山热液型矿床(周金 城等,1994;夏嘉生,1995)。梁业恒等(2008)通过 对观山铜铅金矿脉体中的流体包裹体研究,发现它 们的气相比例变化较大,显示成矿过程中可能发生 过沸腾作用,成矿流体的冰点温度与均一温度都较 低,同时考虑到其中大量出现贱金属硫化物与重晶 石,在蚀变矿物中大量出现高岭石等粘土矿物,并 且成矿流体中可能有岩浆水的参与,因此提出该矿 应属于典型的高硫型浅成低温热液金属矿床。鉴于 整合覆盖白垩系龙王山组(K₁*l*)、云合山组(K₁*y*)、 该矿床在稳定同位素方面的研究还不够深入,本文 从氢、氧、碳、硫同位素几个方面对观山铜铅金矿的 成矿物质来源与成矿溶液的演化进行探讨。

1 区域成矿地质背景

矿区位于江苏省溧水县晶桥镇与白马镇交界 处,距溧水县城16km。该区大地构造上隶属于扬子 准地台下扬子沿江(古生代-三叠纪)坳陷带,处于 江南古陆的北东边缘,是一个以断裂为界的菱形火 山岩凹陷区,西有方山-小丹阳断裂,东有茅山西侧 断裂,北有南京-湖熟断裂,南有小丹阳-双牌石断 裂。区内出露自志留系高家边组至侏罗系西横山组 一套完整的沉积岩系,构成了本区的基底,其上部不 大王山组(K₁d)和甲山组(K₁j)的火山岩。火山岩

[[]收稿日期]2010-02-03;[修订日期]2010-07-01;[责任编辑]郑杰。

[[]基金项目]江苏省有色金属华东地质勘查局委托研究项目(编号: 32110-4206243)和中央高校基本科研业务费专项基金资助。

[[]第一作者简介]梁业恒(1980年-),男,博士后,研究方向为矿床地球化学,E-mail:gtogto54321@msn.com。

[[]通讯作者]孙晓明(1963 年-),男,教授,研究方向为矿床地球化学,E-mai:eessxm@mail.sysu.edu.cn。

断裂(F1-新桥-白马断裂,F2-马鞍山-李巷断裂)

1-mudstones;2-rhyolites;3-trachyandesites;4-andesites and pyroclastic rocks;5-marlites;6-quartz sandstones;7-siltstones;8 -caledonian-hercynian tectonic layers;9-faults(F1-Xinqiao-Baima fault,F2-Ma'anshan-Lixiang fault)

系之上不整合覆盖葛村组及红层(浦口组和赤山 组)。次火山岩(包括火山-侵入体)是各旋回火山 活动特定阶段的产物,与火山岩具有时间、空间、物 质组分和岩浆源相同的特点。常见的次火山岩为充 填于火山机构的火山颈相岩石,由闪长岩、闪长玢 岩、钾质(石英)粗安斑岩、正长斑岩、英安斑岩和石 英斑岩等组成^①。

2 矿区地质特征

观山铜铅金矿处于新桥-白马断裂与马鞍山-李巷断裂的交汇点,观山古火山之中心部位(图1)。 整个火山通道为粗安质次火山岩侵入充填,其形态 与该次火山岩的形态基本一致,呈向南西倾斜收缩 的喇叭状。火山颈四周为早白垩系大王山组丘虎山 旋回(K,1)和观山旋回(K,2)之粗安质-粗面质火 山岩,距火山通道较近处的火山岩多为粗安质集块 角砾岩,而距离较远的多为粗安质凝灰角砾岩、粗安 岩。成矿岩体为白垩系次火山岩-斑岩,呈岩颈及 岩脉状产出,与大致同期侵位的闪长岩类存在过渡 关系。矿床围岩是侏罗-白垩系浅成岩体及其爆发 角砾岩,也可以是成矿前的其它围岩。矿体定位与 产出于火山通道外侧的裂隙带中,呈近平行-平行 的脉体或脉带,矿脉沿走向和倾向长度可达数百米, 铜含量一般在1%左右。矿脉均分布在粗安斑岩次 火山岩体的边缘,在地表表现为重晶石赤铁矿铁帽, 在平面上大致呈三角形形态(或近环形),每条矿脉 的产状均与粗安斑岩接触面一致,向"三角形"的中 心倾斜。各矿脉长短不一,倾角陡,厚度变化较大, 矿化不均匀。浅部矿体膨大收缩、分枝复合现象明显,平 行小矿体也较多;到深部矿体渐趋稳定,形态较规则,厚

图 2 江苏省溧水县观山铜铅金多金属矿床综合地质图 (据华东有色地质矿产勘查开发院改编¹²)

Fig. 2 geological sketch map of Guanshan Cu-Pb-Au polymetallic deposit, Jiangsu province (modified after east China geological explorationand development institute for non-ferrous metals)

a-中生代火山岩;b-断层(F₁-方山-小丹阳断裂;F₂-茅山西侧断裂;F₃-南京-湖熟断裂;F₄-小丹阳-双牌石断裂);c-湖泊;1-第四系;2-白垩系角闪粗安斑岩;3-白垩系粗面岩;4-白垩系粗安斑岩;5-白垩系凝灰角砾岩;6-矿脉;7-钻孔 位置及编号

 $a-Mesozoic \ volcanic \ rocks; b-fault (F_1-Fangshan-Xiaodanyang \ fault; F_2-Maoshan \ fault; F_3-Nanjing-Hushu \ fault; F_4-Xiaodanyang-Shuangpaishi \ fault); c-lake; 1-Quaternary; 2-Cretaceous \ hornblende \ trachyandesites; 3-Cretaceous \ trachytes; 4-Cretaceous \ trachyandesites; 5-Cretaceous \ tuff \ breccias; 6-veins; 7-borehole \ and \ its \ serial \ number$

度变化较小。有用组份的分布具分带性,在平面上,自北 西向南东铜矿带过渡到铅铜混合矿带,再过渡到铅矿带; 在垂直方向上,地表的铜铅金混合矿向深部过渡为铜矿。 北部矿体的金含量高于南部,形成金共生矿体或独立矿 体。矿脉长数十米~数百米,最长达1850m,宽一般2~ 5m,最大达30m,倾角较大,一般在50°~80°。剖面上可 见多个平行矿体,各矿体大致呈侧列式排列,其间距一般 为10~25m左右。规模较大的矿脉为一号、二号、六号, 其中一号脉长1850m,走向近东西,倾向北,由两条断续 的主矿体和十个小矿体组成,以铜矿为主;二号脉长 900m,走向北东,倾向南东,由一个主矿体和13个小铜矿 体组成。主矿体旁侧有数条扁豆状的小矿脉,呈大致平 行于主矿体的雁列式排列,并组成约30m 宽的矿带;六 号脉长 1350m,走向北西,倾向南西,倾角 60°左右,呈舒 缓波状弯曲伸展。该矿脉分为北西和南东两矿段,北西 矿段为铜铅金混合矿,南东为铅(锌)矿²⁰(图2)。

矿体原生带的主要金属矿物为黄铜矿、方铅矿、闪 锌矿,次为斑铜矿、辉铜矿,并伴生黄铁矿、赤铁矿等。在 氧化带上述矿物被氧化形成褐铁矿、软锰矿、孔雀石、铜 蓝及铅矾等次生矿物,在地表形成"铁帽"。脉石矿物以 菱铁矿为主,次为重晶石、石英及少量方解石。矿石的结 构多为微粒、细粒,地表可见胶状。

矿体的围岩蚀变有两期,早期蚀变类型有绢云母 化、硅化、黄铁矿化、菱铁矿化;后期有绿帘石化、高岭 土化、碳酸盐化、重晶石化及赤铁矿化。蚀变分带较 明显,略呈对称的带状,由矿体向两侧依次为菱铁矿

表1 观山铜铅金矿含矿石英脉及热液方解石脉的氢、氧、碳同位素组成表

Table 1 Hydrogen, oxygen and carbon isotope compositions of hydrothermal calcites and quartz veins in

the Guanshan Cu-Pb-Au deposit

样品编号	岩性	采样 位置	δD(‰, SMOW)	Th (℃)	$\delta^{18}O_{7K}$ (%,SMOW)	δ ¹⁸ O _{石英} (‰,SMOW)	δ ¹⁸ O _{方解石} (‰,SMOW)	δ ¹³ C _{方解石} ‰,PDB)
07028	石英	ZK1702,393m 处	-76	249.1	-1.1	12.4		
07036	石英	ZK1702,520m 处	-70	217.3	-7.6	9.7		
07046	石英	ZK2301,96m 处	-78	189.2	-8.9	5.0		
07049	石英	ZK2301,176m 处	-81	233.1	-4.5	13.2		
07186	石英	ZK1802,323m 处	-90	227.3	-4.5	13.5		
07013	方解石	ZK1702,187m 处	-82	251.6	2.1		10.1	-1.2
07032	方解石	ZK1702,447m 处	-87	196.7	0.1		12.6	2.9
07034	方解石	ZK1702,471m 处	-81	187.7	2.3		13.1	2.7
07037	方解石	ZK1702,548m 处	-90	206.3	1.3		12.1	0.3
07061	方解石	ZK2301,450m 处	-85	193.9	0.7		15.5	1.9
07057	方解石	ZK2301,357m 处					28.4	6.1
07081	方解石	ZK1801,177m 处					14.5	-0.3
07100	方解石	ZK1801,398m 处					15.2	-4.1
07149	方解石	ZK1851,160m 处					14.2	2.0
07202	方解石	ZK1802,357m 处					11.6	3.7

测试单位:中国国家地质测试中心同位素实验室;测试时间:2008年5月。

化、重晶石化、黄铁矿化、硅化、高岭土化和绢云母。

3 样品及分析测试方法

本次研究所用样品采自观山铜铅金矿 VI 号脉 五个钻孔(ZK1702、ZK1801、ZK1802、ZK1851、 ZK2301)中不同位置的岩石和矿脉。其中矿石矿物 为黄铜矿、黄铁矿和方铅矿等硫化物,代表该矿形 成的主要成矿阶段,脉石矿物为热液方解石和石英。 本文主要对这几种矿物进行氢、氧、碳、硫同位素测 定。

样品的氢、氧、碳、硫同位素分析由中国国家地 质测试中心同位素实验室完成。石英及方解石流体 包裹体氢同位素用爆裂法取水,锌法制氢;氧同位素 用 BrF、法;方解石的碳同位素用 100% 磷酸法;硫同 位素样品用硫化物与 Cu₂O 和 V₂O₅ 混合氧化剂在 高温真空条件下反应制取 SO₂。氢、氧、碳同位素采 用 MAT 251EM 质谱计测定, 硫同位素采用 MAT-251C 质谱计测定。氢、氧同位素采用的国际标准为 SMOW,碳同位素采用国际标准为 PDB,硫同位素采 用国际标准为 CDT。氧、碳、硫同位素分析精度为± 0.2‰,氢同位素分析精度为±2‰。根据方解石或 石英中流体包裹体的均一温度和矿物-水氧同位素 方程,计算出流体的δ¹⁸0_{*}值。流体的均一温度取 其平均值,方解石与水的氧同位素平衡公式采用 $\Delta_{\hat{\pi}_{\text{FHG}-k}} = 2.78 \times 10^6 / \text{T}^2 - 3.39 (\text{O'Neil et al., 1969}),$ 石英与水的氧同位素平衡公式采用 $\Delta_{\overline{T}\overline{B}-N} = 3.38 \times$

 $10^{6}/T^{2}$ - 3. 40 (Clayton, 1972) $_{\circ}$

表 2 观山铜铅金矿硫化物的硫同位素组成表

Table 2 Sulfur isotope compositions of sulfides in the

Guansnan Cu-PD-Au d	Guanshan	Cu	-Pb-	-Au	der	osit
---------------------	----------	----	------	-----	-----	------

样品号	采样位置	岩性	$\delta^{34}_{\text{SV-CDT}}(\text{\%o})$
07001	ZK1702,28m 处	黄铁矿	6.6
07018	ZK1702,247m 处	黄铜矿	9.8
07025	ZK1702,333m 处	黄铜矿	6.8
07027	ZK1702,393m 处	黄铁矿	8.7
07034	ZK1702,471m 处	黄铜矿	9.2
07055	ZK2301,265m处	方铅矿	1.8
07099	ZK1801,396m 处	黄铁矿	8.4
07143	ZK1851,105m 处	黄铁矿	6.3
07149	ZK1851,160m 处	黄铁矿	9.9
07161	ZK1802,79m 处	黄铁矿	5.8
07201	ZK1802,355m 处	黄铁矿	6.0
07207	ZK1802,407m 处	黄铁矿	6.1

测试单位:中国国家地质测试中心同位素实验室;测试时间:2008年5月。

4 分析结果及讨论

4.1 氢、氧同位素地球化学

本次测定的含矿石英脉及热夜方解石脉的氢氧 同位素组成见表 1。石英流体包裹体水的 $\delta D =$ -90% ~ -70%, $\delta^{18}O_{\pi \pm} = 5.0\%$ ~ 13.5%,根据石英 与水的氧同位素平衡公式计算的成矿流体的 $\delta^{18}O_{\pi} =$ = -8.9% ~ -1.1%。方解石流体包裹体水的 $\delta D =$ -90% ~ -81%, $\delta^{18}O_{5 \# -} = 10.1\%$ ~ 15.5%。根据 方解石与水的氧同位素平衡公式计算的成矿流体的 $\delta^{18}O_{\pi} = 0.1\% \sim 2.3\%$ 。石英与方解石的 δD 相当, 而前者的 $\delta^{18}O_{\pi}($ 平均值-5.3%)则明显地低于后者 (平均值 1.3%)。

前人的研究显示,观山铜铅金矿成矿流体的 δ^{18} O水值为 0. 75% ~ 10. 80%,其中地表及浅部矿 体中的 δ^{18} O_{*} 值为 0. 75% ~ 4. 69%, 贫¹⁸O,热液基 本来自大气降水,而深部矿体和蚀变围岩中的 δ^{18} O_{*} 值较高,为 5. 98% ~ 10. 80%,已进入岩浆水的 范畴,由此推断观山矿床中成矿热液主要是大气降 水,但矿体深部有岩浆水参入(夏嘉生,1995)。

石英脉中流体包裹体的氢氧同位素组成较接近于大 气降水,而方解石位于大气降水和岩浆水的区域之 间,显示它们的主体应为大气降水。考虑到本地区 中生代大气降水的氧同位素组成为 $\delta^{18}O_{\star} = -8\%$ (张理刚,1989),而本次研究的 δ¹⁸ O_兆多数高于此 值。造成大气降水δ¹⁸0值升高的主要原因有二方 面:1).深部有岩浆水的渗入:2).大气降水与围岩 进行水岩交换,导致氧同位素组成发生漂移。从图 2 可见,观山成矿流体 δD 变化不大, 而 $\delta^{18}O$ 变化较 大,主要落在氧同位素组成漂移线上,显示该矿成矿 过程中,下渗的大气降水与次火山岩曾发生较强烈的 水岩反应。同时,考虑到观山部分流体包裹体具有较 高的盐度,可达到 7.39% NaCleq, 而 Cu²⁺和 Pb²⁺等贱 金属离子需要较多的 Cl⁻形成络合物而进行运移和富 集,单纯的大气降水显然无法提供较多的 Cl⁻,因此, 不能排除该矿成矿流体中有少量岩浆水的加入。

4.2 硫同位素地球化学

观山硫同位素分析结果见表 2,可见黄铁矿与 黄铜矿的 $\delta^{34}S_{V-CDT}$ 基本接近,为 5.8% ~9.9%,平均 值为 7.6%,远高于方铅矿 $\delta^{34}S$ 组成($\delta^{34}S_{V-CDT}$ = 1.8%),显示该矿成矿过程中 S 同位素组成基本达 到了平衡。同时该矿硫同位素组成比较集中,说明 其硫源比较单一,成矿环境和成矿物理化学条件较 为稳定。

与国内多宝山(冯健行,2008)、阿勒舍(陈毓川 等,1996)等明显岩浆来源的其它矿床相比,观山铜 铅金矿的硫同位素组成相对较高(图4)。不同含硫 物种富集³⁴S的能力具有明显的差异,呈现的规律为 $(SO_4^{-2} \rightarrow SO_2 \rightarrow H_2S)$ 。观山矿床脉石矿物中可见较 多的重晶石等硫酸盐矿物,这种高价态硫的矿物的 存在显示其成矿过程中 f_{02} 较高,同时其成矿流体的

 δ^{34} S 应远高于从其结晶的硫化物 S 同位素组成(郑 永飞等,2000),很可能接近10‰,本次测定的S同 位素值范围相当大,说明其中的 S 主要来自火山岩 盆地基底沉积岩和次火山岩浆中S的混合。此外, 郑永飞等(2000)对现代火山气体中硫同位素组成 的研究显示,火山气体中主要含硫物种为 SO_2 和 H₂S,其间存在同位素交换。SO₂在水中的溶解度远 大于 H_2S ,因此富³²S 的 H_2S 易呈气相逸出,较富³⁴S 的 SO₂ 溶于水而残留在岩浆体系当中,并可形成 $[SO_{4}]^{2-}$ 等原子团,适当条件下可还原成 S^{2-} ,同时保 存了其富³⁴S的特性,使得沉淀的黄铁矿、黄铜矿等 硫化物同样富集³⁴S。梁业恒者等(2008)的研究表 明,观山矿成矿过程中曾经历过明显的流体沸腾过 程,H,S 等气体大量逸出,导致残余岩浆流体富集³⁴ S_o 本矿热液硫化物³⁴S 的高度富集很可能部分源自 这种火山气体的同位素交换。

4.3 碳同位素地球化学

成矿热液中的碳主要有 3 种可能来源(田世洪 等,2007):1) 地幔射气或岩浆来源。地幔射气和岩 浆来源的碳同位素组成 δ^{13} C 变化范围分别为-5% ~-2‰和-9‰~-3‰(Taylor,1986);2) 沉积岩中 碳酸盐岩的脱气或含盐卤水与泥质岩相互作用。这 种来源 δ^{13} C 变化范围为-2‰~+3‰,海相碳酸盐 δ^{13} C 大多稳定在 0 ‰左右(Veizer *et al.*,1980);3) 各种岩石中的有机碳。有机碳一般富集¹²C,因而 碳同位素组成很低,其 δ^{13} C 变化范围为-30 ‰~-15‰,平均为-22 ‰(Ohmoto,1972)。从表 1 的分

析结果可见,观山铜多金属矿热液方解石的δ¹³C 方解石=-4.1‰~6.1‰,平均为δ¹³C_{方解石}=1.3‰, 与海相碳酸盐碳同位素范围(平均-3‰~2‰)基本 一致(图5)。而且,在高 f_{02} 条件下,热液方解石的 δ¹³C基本可以代表成矿流体总C的δ¹³C组成(郑永 飞等,2000)。因此,观山热液方解石中的碳可能主 要来自构成本区基底的自志留系高家边组至侏罗系 西横山组一套完整的碳酸盐类沉积岩系。大气降水 在下渗和加热对流过程中,溶解基底地层中的碳酸 盐类,并将其带到火山岩体裂隙中,形成热液碳酸盐 矿脉。

5 结论

氢、氧同位素研究显示,观山铜铅金多金属矿成 矿热液主要为经过了水岩反应的循环大气降水组 成,但不排除少量岩浆水加入;热液硫化物的 δ^{34} S 已基本达到同位素平衡,硫很可能来自本区基底沉 积岩来源硫与岩浆岩来源硫的混合。观山矿成矿过 程中的流体沸腾导致 H_2 S 等气体大量逸出和残余 岩浆流体富集³⁴S。热液方解石碳同位素显示观山 成矿流体中的 C 主要来源于基底岩石中的碳酸盐 地层。

致谢: 江苏有色金属华东地质勘查局叶水泉教 授级高工给予了大力的帮助。核工业北京地质研究 院刘汉彬老师和中国国家地质测试中心同位素实验 室万德芳老师等在同位素测定中给予了支持,在此 一并表示感谢!

[注释]

- 华东有色地质矿产勘查开发院. 2005. 江苏省溧水县观山及其外 围次火山岩型铜多金属矿普查工作设计书
- ② 华东有色地质矿产勘查开发院. 1982. 江苏省溧水县观山铜铅矿 床六号脉带地质勘查报告书

[References]

- Chen Yu-chuan, Ye Qing-tong. 1996. Ore-forming conditions and metallogenic prognosis of the Ashele copper-zinc metallogenic belt, Xinjiang, China[M]. Beijing: Geological Publishing House: 134(in Chinese)
- Clayton R N, O' neil J R and Mayeda T K. 1972. Oxygen isotope exchange between quartz and water [J]. Journal of Geophysical Research, B77:3057-3067
- Feng Jian xing. 2008. Distribution character of sulfur isotope in the duobaoshan copper deposit[J]. Geology and Prospecting,42(1):46 -49(in Chinese with English abstract)
- Hedenquist J W, Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature,370:519–526
- Hoefs J. 2004. Stable Isotope Geochemistry (5th Edition) [M]. Berlin: Springer-Verlag:48-53,71-73
- Liang Ye-heng, Sun Xiao-ming, Zhai Wei, Ma Chun, Wu Zhi-qiang, Ding Cun-gen, Wang Tang-xi, Li Ai-ju, Liang Jin-long. 2008. Geochemistry of ore-forming fluids and genesis of Guanshan Cu-Pb-Au [J]. Mineral Deposits, 27(5):587-594 (in Chinese with English abstract)
- O'Neil J R, Clayton R N and Mayada T K. 1969. Oxygen isotope fractionation in divalent metal carbonates [J]. Journal of Chemical Physics, 51:5547-5558
- Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrother-

mal ore deposits[J]. Economic Geology, 67:551-578

- Taylor B E. 1986. Magmatic volatiles: Isotope variation of C, H and S. Reviews in Mineralogy. In: Stable isotopes in high temperature geological process[J]. Mineralogical Society of America, 16:185-226
- Tian Shi-hong, Hou Zeng-qian, Yang Zhu-sen, Ding-Tiping, Zeng Pusheng, Wang Yan-bing, Wang Xun-cheng. 2007. REE and stable isotope geochemical characteristics of the Mashan Au-S deposit in Tongling, Anhui province[J]. Acta Geologica Sinica, 81(7):929-938(in Chinese with English abstract)
- Veizer J, Holser W T and Wilgus C K. 1980. Correlation of 13 C/ 12 C and 34 S/ 32 S secular variation [J]. Geochimica et Cosmochimica Acta, 44:579–588
- Xia Jia-sheng. 1995. Location model and prospecting model of endogenetic metallic deposits in Lishui volcanic basin, Jiangsu [J]. Jiangsu Geology, 19 (1):5-11(in Chinese with English abstract)
- Zhang Li-gang. 1989. Diagenesis and Metallogeny-Stable Isotope Geology of Major Deposits and Granites in China [M]. Beijing: Beijing University of Technology Press: 121 (in Chinese)
- Zheng Yong-fei, Chen Jiang-feng. 2000. Stable Isotope Geochemistry [M]. Beijing:Science Press:134(in Chinese)
- Zhou Jin-cheng, Zhao Tai-ping, Chen Ke-rong. 1994. Analysis of tectonic setting for occurrence of Lishui Mesozoic shoshonite series and its

evolutional relationship[J]. Journal of Nanjing University, 30(3): 504-510(in Chinese with English abstract)

[附中文参考文献]

- 陈毓川,叶庆同,1996. 阿舍勒铜锌成矿带成矿条件和成矿预测[M]. 北京:地质出版社:134
- 冯健行.2008. 多宝山铜矿硫同位素空间分布特征[J]. 地质与勘探, 42(1):46-49
- 梁业恒,孙晓明,翟 伟,马 春,吴志强,丁存根,王堂喜,李爱菊,梁 金龙.2008. 江苏观山铜铅金矿床成矿流体地球化学和成因 [J]. 矿床地质,27(5): 587-594
- 田世洪,侯增谦,杨竹森,丁悌平,蒙义峰,曾普胜,王彦斌,王训诚. 2007.安徽铜陵马山金硫矿床稀土元素和稳定同位素地球化学 研究[J].地质学报,81(7):929-938
- 夏嘉生.1995.江苏溧水火山岩盆地内生金属矿床定位模式及找矿思路[J].江苏地质,19(1):5-11
- 张理刚. 1989. 成岩成矿理论与找矿-中国主要类型矿床及花岗岩类 岩石的稳定同位素地质学[M]. 北京:北京工业大学出版社:121
- 郑永飞,陈江峰.2000.稳定同位素地球化学[M].北京:科学出版社: 233-234
- 周金城,赵太平,陈克荣.1994. 溧水中生代橄榄安粗岩系的构造环境 及演化关系[J]. 南京大学学报,30(3):504-510

Stable Isotopic Geochemistry and Genesis of the Guanshan High–Sulphidation Type Cu–Pb–Au Deposit in Jiangsu Province

LIANG Ye-heng^{1,2,3}, SUN Xiao-ming^{1,2,3}, ZHAI Wei^{1,2}, MA Chun⁴

WU Zhi-qiang4, DING Cun-gen4, WANG Tang-xi4

(1. School of Marine Sciences, Sun Yat-sen University, Guangzhou 51027;

2. Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 519275;

3. Department of Earth Sciences, Sun Yat-sen University, Guangzhou 510275;

4. Eastern China Geological & Mining Organization for Non-ferrous Metals, Nanjing 210007)

Abstract: The Guanshan Cu–Pb–Au deposit in Jiangsu Province is a high–sulphidation type epithermal poly–metallic deposit. This work studies the stable isotope compositions of ore minerals and fluid inclusions, the sources of ore–forming fluid and materials. The result shows that the δD and $\delta^{18} O$ of fluid inclusions in quartz veins range from -90% to -70% and -8.9% to -1.1%, respectively, while those of the hydrothermal calcites are $-90\% \sim -81\%$ and $0.1\% \sim 2.3\%$, respectively, indicating that the ore–forming fluids stem mainly from cycling atmospheric precipitation and a little amount of magmatic water. The sulfur isotope of chalcopyrites and pyrites range from 5.8% to 9.9%, with average 7.6%, suggesting that the sulfur is probably derived partly from sedimentary rocks. Plenty of sulfates such as barites can be found in Guanshan implies the enrichment of ³⁴S in the ore–forming fluids, and deposited pyrites and chalcopyrites enriched in ³⁴S. δ^{13} C of hydrothermal calcites are $-4.1\% \sim 6.1\%$ with average 1.3%, implying that the primary source of the carbon in the ore–forming fluids is the dissolved carbonate formation in the basement rocks.

Key words: Stable isotope, Epithermal deposit, Guanshan Cu-Pb-Au deposit, Ore-forming fluids