Vol. 46 No. 4 July ,2010

地球化学(

与溢流性玄武岩有关的铜镍硫化物矿床 地质地球学特征与成矿潜力分析

—以广西罗城县清明山铜镍硫化物矿床为例

刘继顺¹, 杨振军^{1,2}, 伊利军¹, 豆 松¹, 康亚龙¹, 杨立功¹ (1. 中南大学地学与环境工程学院,长沙 410083;

2. 广西罗城矿业有限责任公司, 罗城 546400)

[摘 要] 广西罗城县清明山铜镍硫化物矿床,镁铁质-超镁铁侵入岩与玄武岩广泛分布,时空关系 密切,两者岩石化学成分丰度相同,均具有富 MgO、贫 SiO₂、TiO₂、K₂O 的特征,微量元素、稀土特征相同, 具有成因上的联系和有先后演化的特征。含矿镁铁质岩体岩石化学成分 SiO₂ 含量为 42.68~50.63%, K₂O 含量 0.052~2.54%,TiO₂ 含量 0.326~0.63%;微量元素 Rb,Ba 富集,Ta、Nb 亏损的特征,稀土元 素含量中等 Σ REE=27.56~52.36(10⁻⁶), Σ LREE/ Σ HREE=7.17~12.31,(La/Yb)_N=2.48~8.17, \deltaEu =0.93~1.43,轻稀土富集,配分曲线右倾,无 δ Eu 负异常;硫同位素 δ ³⁴S 值 4.52~17.04‰。镁铁质-超 镁铁岩和铜镍硫化矿主要物质来源于幔源,有壳源混染;地质特征、地球化学特征等与美国 Duluth 铜镍 硫化物矿床特征相同,为国内一种新的与溢流玄岩有关的岩浆铜镍硫化物矿床,资源潜力巨大。

[关键词]铜镍硫化物矿床 镁铁质-超镁铁岩 玄武岩 清明山

[中图分类号]P618.51 [文献标识码]A [文章编号]0495-5331(2010)04-0687-11

Liu Ji-shun, Yang Zhen-jun, Dou Song, Yin Li-jun, Kang Ya-long, Yang Li-gong. Analysis of the geologic and gechemical characteristics and mineralization potential of Cu-Ni sulfide deposits associated with overflow basalt: A case study of the Qingmingshan Cu-Ni sulfide deposit, Guangxi Province [J]. Geology and Exploration, 2010, 46(4):0687-0697.

目前国内已探明的岩浆铜镍硫化物矿床很多, 多与镁铁质-超镁铁侵入岩有关(宋叔和等,1993; 毛景文,2001;黄杰等,2007),以规模大、含镍品位高 而著称,如甘肃金川、吉林赤柏松等;已探明和证实 的与溢流玄武岩有关的岩浆铜镍硫化物矿床则比较 少见,位于广西罗城县四堡地区的清明山岩浆铜镍 硫化物矿床是典型的代表之一,本文拟对其矿床地 质特征、岩石化学特征和同位素特征等进行系统研 究,探讨成岩、成矿机制,并和美国与玄武岩有关的 Duluth 岩浆铜镍硫化物矿床进行对比,分析其成矿 潜力,这对于广西罗城地区岩浆 Cu-Ni 硫化物矿床 的成因认识及找矿意义重大。

1 区域地质背景

清明山岩浆铜镍硫化物矿床位于扬子地台西南 缘,桂北镁铁质-超镁铁岩带南段四堡大断裂东侧。

区域上出露地层主要为四堡群、丹洲群和泥盆 系地层(图1)。四堡群由镁铁质火山岩、侵入岩与 浅变质的砂泥质岩组成;火山岩主要为玄武岩、安山 质玄武岩、熔岩、火山碎屑岩,侵入岩主要为层状及 似层状镁铁质-超镁铁侵入岩。丹洲群为一套浅变 质的浅海-半深海相沉积,岩性由砂岩、粉砂岩和硅 质岩组成,沿四堡群地层周边分布,与四堡群角度不 整合接触。在四堡群和丹洲群四周零星分布有泥盆 系灰岩、白云岩地层。

[[]收稿日期]2010-02-24;[修订日期]2010-06-16;[责任编辑]郑杰。

[[]基金项目]国家自然科学基金项目(40072032)资助。

[[]第一作者简介]刘继顺(1957年-),男,教授,博士生导师,主要从事有色金属矿床研究,E-mail:2515180@ chinaacc.com。

图1 广西罗城县清明山铜镍矿区域地质图(据广西罗城宝坛幅1:5 万区域地质图修编)

Fig 1. Geological map of the Qingmingshan Cu-Ni deposit in Locheng county, Guangxi Province (modified from 1:50000 regional geological map of the Luocheng-Baotan area)

1-四堡群;2-丹洲群;3-镁铁质-超镁铁岩体;4-辉绿岩;5-玄武质熔岩;6-花岗岩;7-断层;8-地质界线;9-不整合
 地质界线;10-铜镍矿床;Ⅰ-扬子古陆;Ⅱ-研究区

1-Sipo Group;2-Danzhou Group;3-mafic-ultramafic;4-diabase;5-basalt lava;6-granite;7-fault;8-bouderline;9 -unconformity boundary;10-Cu-Ni deposit; I -Yangtze ancient land; II -study area

区域构造为池洞大断裂和四堡大断裂,倾向 褶皱表现为两类不同性质的褶皱,一类是四堡期褶 270°~290°,倾角40°~70°,长80~100km。区域性 皱,以近东西向紧闭的线型褶皱为主,构成了本区构 造基底;另一类是雪峰期褶皱,以北东向、南北向宽 缓的褶皱为主,构成了地表上覆褶皱。

2 矿区岩浆岩的特征

2.1 岩浆岩的空间分布、时代及岩体地质特征

与岩浆铜镍硫化物矿床有关的镁铁质-超镁铁 岩体侵入和分布在由浅变质的砂泥质岩、火山碎屑 岩和玄武岩组成的四堡群文通组地层中,以岩墙的 形式出露,近东西向走向,延长近10km,厚度50~ 300m,总体倾向南,倾角35°~50°。镁铁质-超镁铁 侵入岩形成于晚元古代(928±21Ma,Re-Os)(毛景 文等,2001),受后期构造运动作用,地表镁铁质-超 镁铁侵入岩表现出与四堡群地层一同变形和褶皱的 特征。

2.2 岩浆岩的岩石学特征

镁铁质-超镁铁岩体分异演化较好,岩相较全, 粒级层理发育,具有较好的岩相分带,由上到下按岩 性可以划分为(花岗)闪长岩→辉长辉绿岩→辉石 岩等岩相。

镁铁质-超镁铁岩呈灰绿色-深灰绿色,主要岩 石矿物成分有橄榄石、辉石、斜长石等,典型的自形 -半自形粒状结构、嵌晶结构、包橄结构、辉长辉绿 结构等,块状构造。蚀变较普遍,橄榄石、辉石和斜 长石大部分已被蚀变成蛇纹石、滑石、透闪石、绿泥 石和绢云母。

矿区内四堡期岩浆活动主要以溢流和间隙性喷 溢为主①,岩性主要为玄武岩(1667+247Ma, Rb-Sr)(董宝林,1987)、安山质玄武岩、凝灰岩、火山角 砾岩、集块岩、火山熔岩,玄武岩具典型的枕状构造、 气孔构造,火山岩层厚3~655m^①。

镁铁质-超镁铁侵入岩有分布在玄武岩下部 的,也有侵入玄武岩内部的,两者在时空上相互依 存、相伴出现和分布。

2.3 岩浆岩的化学成分及地球化学特征

2.3.1 岩石化学成分

镁铁质-超镁铁侵入岩与玄武岩的岩石化学成 分(表1)结果表明,镁铁质-超镁铁侵入岩 SiO₂ 含 量为 42.68 ~ 50.63%, Al₂O₃含量 6.62 ~ 17.54%, Fe₂O₃+FeO 含量 7.92 ~ 12.37%, M/F 为 0.80 ~ 2.03, MgO 含量从 6.88 ~ 25.12%, K₂O 含量 0.052 ~ 2.54%, TiO₂ 含量 0.326 ~ 0.63%; 岩石成分总的 特征是 MgO 变化比较大, TiO₂, K₂O 的含量较低。

玄武岩的的岩石化学成分 SiO₂ 含量为 50.14 ~ 55.31%, Al₂O₃ 含量 9.08 ~ 15.26%, MgO 含量从 3.44 ~ 8.08%, K₂O 含量 0.03 ~ 0.99%, TiO₂ 含量 0.4 ~ 0.83%; 岩石化学成分总的特点是贫 TiO₂、 K₂O, 玄武岩岩石化学成分的丰度和特征与镁铁质 侵入岩一致。

表1 清明山矿床镁铁质岩体岩石化学成分(%) Table 1 Major chemical components of mafic rocks in the Qinmingshan deposit(%)

样号	岩性	SiO_2	TiO ₂	Al_2O_3	$\mathrm{Fe}_2\mathrm{O}_3$	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	灼失	Total
GXQ5	花岗闪长岩	75.13	0.041	13.18	0.523	1.2	0.084	0.176	0.488	3.26	4.82	0.12	0.724	99.7
GXM6	花岗闪长岩	76.71	0.053	12.46	0.825	0.936	0.047	0.201	0.337	2.73	4.78	0.158	0.632	99.9
GXQ2	辉绿岩	49.17	0.63	11.62	2.14	7.99	0.211	12.41	7.03	1.24	2.54	0.061	3.885	98.9
GXQ4	辉绿岩	50.63	0.617	16.74	2.85	5.74	0.319	6.88	9.45	2.36	1.36	0.058	2.305	99.3
GXM3	辉绿岩	51.73	0.511	9.58	1.76	8.06	0.2	16.15	6.63	1.02	0.658	0.05	4.393	100.7
GXM5	辉绿岩	50.99	0.556	17.54	2.04	5.88	0.208	6.99	7.66	2.74	1.94	0.052	2.617	99.2
GXQ3	辉石岩	45.03	0.442	7.85	2.56	9.05	0.23	21.61	6.03	0.152	0.052	0.041	5.451	98.5
GXM2	辉石岩	45.84	0.52	10.58	1.23	11.02	0.219	17.87	6.88	0.75	1.19	0.071	5.591	101.8
GXM4	橄榄岩	42.68	0.326	6.62	4.3	8.07	0.233	25.12	3.98	0.265	0.12	0.033	6.797	98.5
ZK2-24 ²	玄武岩	51.23	0.63	15.15	1.83	6.61	0.16	8.08	9.17	3.32	0.56	0.06	2.4	99.2
ZK2-30 ²	玄武岩	50.14	0.4	9.08	1.97	0.99	0.15	3.44	18.28	0.69	0.03	0.04	14.63	99.8
4556-18 ^①	安山玄武岩	55.31	0.83	15.26	0.99	9.19	0.186	7.06	7.1	2.83	0.99	0.163		99.9
$3257-57v^{\textcircled{1}}$	玄武岩	53.46	0.74	14.6	3.16	7.24	0.75	7.58	8.56	2.62	0.44	0.115		99.3

注:GXQ、GXM 编号样品为本文样品,国地资源中南矿产资源监督检测中心测试;ZK 编号样品引自②;4556-18、3257-57 样品引自①。

Table 2 Trace elements abundances of matic rocks in the Qingminghshan Cu–Ni deposit (unit: 10^{-6})														
样号	GXQ3	GXM2	GXM4	GXQ4	GXQ2	GXM3	GXM5	GXQ5	GXM6	GXQ1	GXM1	JP19	SM-54	GX-4
岩性	辉石岩	辉石岩	辉石岩	辉长辉 绿岩	辉长辉 绿岩	辉长辉 绿岩	辉长辉 绿岩	花岗闪 长岩	花岗闪 长岩	块矿	浸染矿 石	玄武岩	玄武岩	玄武岩
Cu	40.2	1380	111	43.2	83.4	117	37.4	6.2	44.8	2590	18400			
Pb	1.97	12.3	40.8	44.8	42.3	7.55	7.04	10.8	17.8	6.3	67.5	12.08	26.4	5.37
Zn	632	200	245	385	212	136	161	63.4	38.5	70.7	878			
Cr	2460	1540	2800	293	1010	1430	291	17.9	14.3	317	653	734	399	1358
Ni	619	2740	581	74.6	569	240	66	6.09	11.9	99800	79400	20.03	26.8	359
Co	83.9	134	103	27.3	54.4	58.6	35.6	1.06	1.26	1400	1180	35.47	43.6	
Rb	4.77	71.3	12.4	92.4	179	36.7	133	806	463	4.39	37.8	143.3	14	24.6
\mathbf{Sr}	9.24	23.5	19.5	135	182	34.7	240	9.02	10.2	1.69	36.7	149.5	145	57
Ba	5.31	152	15.6	201	387	109	888	44.8	23.9	3.58	140	433.5	282	77
V	158	173	141	181	212	193	174	1.51	2.95	107	96.8			
Nb	3.4	3.54	2.37	4.69	4.84	3.46	4.16	17.6	11.3	0.2	1.53	4.73	3.85	2.94
Та	0.33	0.32	0.24	0.41	0.46	0.33	0.36	5.06	3.22	0.05	0.16	0.41	0.35	0.19
Zr	39.8	73.9	29.9	69.1	59.8	50.7	61.4	47.9	50.8	1.67	19.2	63.53	67.9	37
Hf	1.23	2.12	0.9	2.05	1.81	1.55	1.82	2.9	2.69	0.05	0.57	2	1.94	0.98
Se	0.046	0.13	0.26	0.12	0.072	0.064	0.15	0.23	0.14	8.91	10.3			
U	0.51	1.03	0.62	0.92	0.88	0.68	0.83	26.6	18.6	0.1	0.38	0.82	0.89	0.36
Th	2.4	2.76	1.67	4.04	3.49	3.07	3.55	12.4	10.4	0.2	1.97	3.86	2.2	0.96
Zr/Ba	7.5	0.49	1.92	0.34	0.15	0.47	0.07	1.07	2.13	0.47	0.14	0.15	0.24	0.48
Ta/Nb	0.1	0.09	0.1	0.09	0.1	0.1	0.09	0.29	0.28	0.25	0.1	0.09	0.09	0.06
Zr/Hf	32.4	34.9	33.2	33.7	33	32.7	33.7	16.5	18.9	33.4	33.7	31.8	35	37.8
Th/Nb	0.706	0.78	0.705	0.861	0.721	0.887	0.853	0.7	0.92	1	1.288	0.816	0.57	0.33

表 2 清明山铜镍矿床镁铁质岩微量元素含量表(10-6)

注:GXQ、GXM 编号样品为本文样品,国地资源中南矿产资源监督检测中心测试;JP、SM、GX 编号样品引自周金城等(2003)。

2.3.2 微量元素

镁铁质侵入岩微量元素分析结果(表2)表明:

1) 大离子亲石元素, Sr 含量明显偏低, Rb 则偏 高,Rb,Sr,Ba 大离子半径元素在偏酸性的岩体中较 富集。

2) 过渡元素 Cr、Ni、Co、Cu、V 与岩性相关性 强,随基性程度降低,含量明显减少。

3) 高场强元素,Zr、Nb、Ta、Hf、U 的含量在同种 岩性中基本稳定,变化不大,高场强元素比值特征一 致;Zr与岩性相关性差,在各种岩性中丰度基本一 $\mathbf{\mathfrak{D}}$:Nb、Ta、Hf、U 等在酸性岩明显富集。

4) 镁铁质-超镁铁岩高场强元素的比值 Nb/U $= 3.44 \sim 6.67$, Ta/Nb = 0.09 ~ 0.10 , Zr/Hf = 32.4 \sim 34.9,Zr/Ba=0.15~7.5。矿石的高场强元素比值

特征与镁铁质-超镁铁岩一致。花岗闪长岩的 比值特征与镁铁质岩差异较大, $Nb/U = 0.6 \sim 0.7$, 690

减少了6~9倍;Ta/Nb=0.28~0.29,增加了2~3 倍;Zr/Hf=16.5~18.9,降低了一倍;Zr/Ba=1.07~ 2.3, 增加了1~4倍; 这可能反映了岩浆在不同的演 化阶段混染程度不同。

5) 玄武岩的微量元素的丰度及特征与镁铁质 岩-超铁质岩一致(表2)。

清明山矿区镁铁质-超镁铁侵入岩与玄武岩的 地幔标准化微量元素蛛网图(图2)反映出大离子亲 石元素 K、Rb、Ba 富集, Sr 富集相对较低; 过渡性元 素 Cr 较富集;高场强元素 Th 明显富集, Nb、Ta、P、 Ti、Yb 为负异常,显示出明显亏损的特征。蛛网图 总体右倾,大离子半径不相容元素富集,小离子半径 元素(Zr之后)曲线基本平坦。

2.3.3 稀土特征

镁铁质--超镁铁侵入岩、玄武岩、矿石的稀土元 素丰度,测试结果(表3)说明:

表3 清明山铜镍矿床镁铁质岩稀土元素分析表(10-6)

7	Table 3	Rare ea	arth elen	ient abu	ndances	of mafic	rocks ir	n the Qi	ngmingsl	an Cu-	-Ni depos	sit (unit	:10 ⁻⁶)	
样品号	GXM2	GXM4	GXQ3	GXQ2	GXQ4	GXM3	GXM5	GXM6	GXQ5	GXQ1	GXM1	ZK2-24	ZK2-30	
岩性	辉石岩	辉橄岩	辉石岩	辉绿岩	辉绿岩	辉绿岩	辉绿岩	花岗闪 长岩	花岗闪 长岩	块矿	浸染矿石	玄武岩	玄武岩	球粒 陨石
La	9.26	6.38	7.53	10.3	7.41	8.24	9.84	6.14	3.76	0.98	11.1	11	3.83	0.3
Ce	18.8	11.9	15.5	20.3	15.1	16.6	20.2	15	10.4	1.55	20.2	22.6	8.52	0.84
Pr	2.35	1.45	2.06	2.59	1.97	2.13	2.57	1.89	1.36	0.17	2.34	2.71	0.95	0.12
Nd	8.93	5.59	8.17	10	7.57	8.16	9.88	6.28	4.54	0.58	7.92	11.2	4.41	0.58
Sm	2.01	1.27	1.9	2.34	1.91	1.91	2.28	2.2	1.85	0.12	1.49	2.7	1.12	0.21
Eu	0.63	0.37	0.29	0.83	0.74	0.55	0.81	0.049	0.032	0.055	0.4	0.8	0.34	0.07
Gd	1.9	1.21	1.75	2.17	1.72	1.79	2.1	1.8	1.46	0.12	1.53	2.64	1.36	0.32
Tb	0.38	0.25	0.35	0.46	0.37	0.37	0.42	0.52	0.48	0.021	0.26	0.52	0.3	0.05
Dy	2.37	1.53	2.1	2.8	2.27	2.27	2.52	3.6	3.14	0.1	1.47	3.36	2.11	0.31
Ho	0.48	0.31	0.43	0.57	0.48	0.47	0.51	0.68	0.54	0.023	0.27	0.69	0.47	0.07
Er	1.35	0.89	1.2	1.59	1.35	1.33	1.44	1.99	1.49	0.061	0.72	1.88	1.34	0.21
Tm	0.25	0.16	0.22	0.29	0.25	0.24	0.26	0.42	0.32	0.01	0.12	0.33	0.26	0.03
Yb	1.65	1.1	1.46	1.96	1.69	1.62	1.68	2.93	2.28	0.072	0.77	1.94	1.76	0.17
Lu	0.24	0.16	0.22	0.29	0.25	0.24	0.24	0.38	0.3	0.01	0.1	0.25	0.26	0.03
Y	13.1	8.38	11.8	15.8	13.3	12.5	14	19.2	16	0.65	7.81	18.4	12.6	1.8
Σree	47.11	30.26	40.08	52.36	39.54	42.49	51.13	38.16	27.56	3.72	46.98	58.2	23.4	2.88
ΣLREE∕ ΣHREE	8.18	8.17	7.66	7.73	7.17	7.67	8.21	4.78	3.9	13.09	12.31	7.07	4.52	2.82
(La/Yb)N	3.18	3.29	2.92	2.98	2.48	2.88	3.32	1.19	0.93	7.71	8.17	3.21	1.23	1.76
La/Sm	4.61	5.02	3.96	4.4	3.88	4.31	4.32	2.79	2.03	8.17	7.45	4.07	3.42	1.43
(Gd/Yb)N	0.61	0.58	0.64	0.59	0.54	0.59	0.66	0.33	0.34	0.89	1.06	0.72	0.41	1.88
δEu	1.13	1.05	0.56	1.29	1.43	1.04	1.3	0.09	0.07	1.61	0.93	1.05	0.97	1

注:GXQ、GXM 编号样品为本文样品,国地资源中南矿产资源监督检测中心测试;ZK 编号样品引自②。

1) 镁铁质 – 超镁铁岩的稀土总量不高, \sum REE = 30. 26 ~ 52. 6 (10⁻⁶), \sum LREE/ \sum HREE = 7. 17 ~ 8. 21, (La/Yb)_N = 2. 48 ~ 3. 32, $\delta Eu = 0.56 ~ 1.43$ (个别例外)。辉长辉绿岩、辉绿 岩的稀土总量、 δEu 值明显比辉石岩高,说明随着岩 浆由超镁铁岩向镁铁质岩演化时,稀土总量、 δEu 值 随之增加。主要稀土元素含量比值特征基本一致, 没有随岩性的变化而改变。

 2)浸染状矿石和块状矿石的稀土特征差异较 大,浸染状矿石的稀土总量,轻重稀土比值,δEu值 等稀土特征与辉石岩一致,说明它们物质来源、成 因、形成环境一致。块状矿石的稀土总量很低,仅有 3.72×10⁻⁶,为浸染状矿石的1/12,轻稀土略富集, 重稀土平坦,δEu为正异常,与地幔岩和洋脊玄武岩 稀土元素特征及配分模式一致;块状矿石的稀土元 素的比值特征又与辉石岩一致,说明块状矿石与镁 铁质岩属同一源区不同类岩浆形成的产物。

3) 玄武岩的稀土丰度和特征与镁铁质-超镁铁 岩一致(表3、图3)。

稀土配分模式图(图 3、4、5、6)可以清楚地看 出:

(1) 镁铁质-超镁铁岩、玄武岩、浸染状矿石的
 稀土配分模式相同,轻稀土元素曲线右倾,轻稀土略
 富集;重稀土元素曲线平坦,弱亏损;无 δEu 异常,
 Gd 略亏损,Yb 略富集。

(2)铜镍硫化物矿石表现两种不同的特征,浸 染状矿石稀土配分模式与镁铁质岩-超镁铁岩一

致;块状矿石(海绵陨铁结构)稀土配分模式完全不 同,其稀土总量较低(<5×10⁻⁶),轻重稀土含量相差 不大,轻稀土相对略富集,总的配分曲线近似平缓, δ Eu 为正异常,表明其岩浆成分、成因和形成条件明 显与浸染状矿石和镁铁质岩不一致,为地幔源区特 征;与金川的配分模式特征类似(图6),金川镁铁质 侵入岩 Σ REE 为 14.69×10⁻⁶ ~21.54×10⁻⁶, Σ LREE/ Σ HREE 为 1.32 ~ 1.41,(La/Yb)_N 为 1.32 ~ 1.41 (闫海卿等,2005),稀土总量较低,轻稀土略富集, 配分模式平缓。

2.4 岩浆岩的成因

综合分析清明山镁铁质-超镁岩体地质、地球 化学特征可以得出:

1) 清明山镁铁质-超镁铁岩的岩石化学成分贫 SiO₂、TiO₂、K₂O 和富 MgO,说明其物质成分来源于 幔源;微量元素 Ta、Nb 亏损,Ta/Nb = 0.09 ~ 0.10, 远低于原始地幔 17.4、球粒陨石 17.5 和洋中脊玄 武岩 19.44(Rolinson,1993; Pearce,1983),反映出 形成镁铁质岩的地幔源区应为陆源岛弧附近岩石圈 部分熔融地幔并且有早期消减的洋壳板片物质或由 其产生的流体的加入混染(张本仁等,2005;汤中立 等,2007)。

 2)研究区镁铁质岩的 Nb/U 比值为 3.44 ~
 6.67,远低于 MORB(47)、球粒陨石和原始地幔(34),也说明了俯冲流体对幔源区物质的混染改 692

图 3 辉石岩和玄武岩稀土配分模式图 Fig. 3 REE partitioning pattern of pyroxenite and basalt

GXQ3-辉石岩;GXM2-辉石岩;GXM4-辉橄岩 Zk2-24-玄

武岩;Zk2-30-玄武岩

GXQ3-pyroxenite; GXM 2-pyroxenite; GXM4-peridotite Zk2-24-basalt; Zk2-30-basalt

图 4 辉长辉绿岩稀土配分模式图

Fig. 4 REE partitioning pattern of gabbro-dibase GXQ2-辉长岩;GXQ4-辉长辉绿岩;

GXM3-辉长辉绿岩;GXM5-辉绿岩

GXQ2-gabbro; GXQ4-gabbro-dibase;GXM3-gabbro-dibase;GXM5-dibase

(引自陈骏等,2004) Fig. 5 REE partitioning pattern of tholeiite

(After Chen et al., 2004)

图6 铜镍矿石稀土配分模式图

Fig.6 REE partitioning pattern of Cu-Ni ore GXQ1-块状矿石;GXM1-浸染状矿石;JC-4-金川二辉橄榄 岩;JC-6-金川橄榄二辉岩(闫海卿,2005)

GXQ1-massive ore; GXM1-disseminated ore; JC-4-lherzolite (JinChuan deposit); JC-6-lherzolite(Jinchuan deposit)

造。

3)研究区镁铁质-超镁铁质岩在原始地幔标准 化蛛网图上的特征完全不同于 OIB,呈现出 Nb、Ta、 Ti、Zr、Ba 呈低峰值亏损,而 Rb、K、Th 呈高峰值富集 特征;镁铁质-超镁铁岩稀土含量中等,轻稀土略富 集,重稀土亏损,无 δEu 负异常等,微量元素和稀土 的特征与大陆拉斑玄武岩的特征近一致(图 5)。

4) 铜镍矿石的硫同位素(表4)表明,铜镍矿石的硫源较均一, δ^{34} S 值接近陨石硫,说明铜镍硫化物 矿石的硫源主要为幔源;镁铁质岩的 δ^{34} S 值范围较 宽(表4),有幔源和壳源两种硫源。

5) 镁铁质-超镁铁岩体没有发现榴辉岩相矿 物,地表也没有出现富钾的碱性岩体;微量元素富集 Rb、贫 Sr,Ba 变化较大,亏损 Nb、Ta,微量元素特征 即不同于岛弧玄武岩 OIB 的特征(富K、Rb、Sr、Ba、 Cs、U、Th、Ta、Nb等),也不同于富钾的大陆碱性玄 武岩(富集K、Ba、Hf、Zr、Sm、Ta、Nb、Th),其含量和 分布特征总体介于岛弧玄武岩与大陆富钾的碱性玄 武岩之间,岩性总体也处于大陆钙碱性玄武岩区域, 结合清明山地区镁铁质岩的岩浆侵入与分布在四堡 群陆源碎屑岩的大地构造环境,推测镁铁质岩浆的 形成构造环境应为岛弧和大陆富钾的碱性岩体区域 之间、接近岛弧的陆缘裂谷环境下岩石圈地幔部分 熔融形成的可能性较大。 3 矿床地质特征

3.1 矿体地质特征

铜镍硫化物矿体分布在镁铁质一超镁铁岩体底 部约0.5~4m 范围内辉石岩相中,矿体呈层状、似 层状、透镜状,矿体的厚度、矿化强度与岩体(尤其 是辉石岩相)的厚度、规模、岩相演化成正相关;浸 染状分布的铜镍矿体一般镍品位0.3~0.5%,铜品 位0.15~0.3%;后期贯入型的脉状铜镍矿体镍品 位较高,一般在1%以上。

铜镍硫化物矿体东西走向,倾向 150°~310°, 倾角 32°~50°,延长大于 1500m(图7),厚 3~10m; 矿体形态呈层状、似层状、透镜状,延深稳定(图7、 图 8)。

图 7 清明山铜镍矿地质图

Fig. 7 Geological map of the Qingmingshan Cu–Ni deposit

1-四堡群;2-辉石岩-辉长岩-闪长岩;3-辉绿岩;4-地质

界线;5-不整合地质界线;6-断层;7-产状;8-矿体

1-Sipu group;2-pyrozenite-gabbro-diorite;3-dibase;4-geological boudary;5-unconformity geological boundary;6-fault;7-attitude of stratum;8-orebody

3.2 矿石的结构构造及矿物成分

矿体一般由浸染状(就地熔离型)矿石组成,局 部见海绵陨铁结构的块状矿石(贯入型)和热液细 脉型矿石(图8);浸染状矿石含镍0.3%~0.5%, 脉状、块状矿石镍品位高于1%,局部可达9.8%。 矿石结构主要有半自形-自形粒状结构、堆晶结构、 海绵陨铁结构和交代结构;矿石的构造主要有浸染 表4 铜镍矿床硫化物硫同位素组成

	Table 4 Sulfur isotope data of Cu–Ni sulfuide deposits								
样品编号	矿床名称	矿石类型	样品名称	δ^{34} (‰)	资料来源				
GXQ1	清明山	铜镍矿石	磁铁矿	4.52	本文				
GXM1	清明山	铜镍矿石	磁铁矿	4.55	本文				
GXM2	清明山	铜镍矿石	磁铁矿	5.16	本文				
4598-16	大坡岭	超镁铁岩	全岩	+17.04	毛景文(2001)				
B-37	大坡岭	镁铁岩	全岩	+16.8	毛景文(2001)				
D19	文得文通	镁铁岩	黄铁矿	+6.3	毛景文(2001)				

注:本文样品测试单位为国地资源中南矿产资源监督检测中心。

状构造和块状构造。

金属矿物以磁黄铁矿、镍黄铁矿、黄铜矿为主, 微量针镍矿、镍辉砷钴矿、钛铁矿、磁铁矿等。主要 硫化物磁黄铁矿(黄铁矿、白铁矿)、镍黄铁矿(紫硫 镍铁 矿、针 镍 矿)、黄 铜 矿 三 者 含 量 之 比 为 1.9:1.4:1。

图 9 桂北清明山地区磁异常分布图(据广西罗 城宝坛幅 1:5 万航磁异常图修编)

Fig. 9 Sketch of magnetic anomalies in the Qingmingshan area, Guangxi Province (modified from1:50000 magnetic anomaly map of the Luocheng Baotan area)

1-异常正等值线;2-异常负等值线;3-零值等值线;4-清明 山矿区范围

1-plus abnormity isoline;2-negative abnormity isoline;3-zero isoline;4-Qingmingshan area 脉石矿物有滑石、透闪石、绿帘石、绿泥石、斜黝帘石及少量的绢云母、石英等。

3.3 矿石的硫同位素特征及矿质来源分析

铜镍硫化物矿石的 δ^{34} S 值(表 4)为 4.52 ~ 5.16‰之间,接近陨石硫,说明铜镍硫化物矿体的矿 质硫源为幔源硫;镁铁质-超镁铁岩体的 δ^{34} S 为 6.3‰~17.04‰,极差为 10.74‰,均值为+13.4‰, 范围较宽,即有幔源硫,也有壳源硫,说明来源于幔 源的镁铁质岩浆在熔离分异、上升、就位结晶过程中 有壳源物质混染。

硫同位素的特征说明镁铁质-超镁铁岩浆在成 矿过程中,铜镍矿成矿物质主要来源于幔源的岩浆 熔离分异,在成岩过程中有壳源物质的加入和混染。 4.1 矿床成因

岩浆铜镍硫化物矿床的形成与镁铁质-超镁铁 岩体的产生、演化密切相关,是由镁铁质岩浆熔离、 结晶分异形成的;主要成矿方式有两种,一是地壳深 部富含铜镍硫化物的镁铁质岩浆先上升侵位至储岩 空间,然后发生熔离和结晶分异形成了浸染的(就 地熔离型)贫矿(宋叔和等,1993;汤中立等,2007); 另一类是深部富含铜镍硫化物的岩浆先熔离分异、 经预富集后形成富矿岩浆,之后上升充填至储岩空 间形成富矿体-块矿(图8),成矿类型与金川铜镍矿 的主要成矿类型一致。

赋矿的镁铁质-超镁铁侵入岩与玄武岩时空关 系密切、相伴分布,岩石化学成分、微量元素特征、稀 土元素特征均相同,应为同一源区的岩浆不同阶段、 不同期次形成的产物,硫化物矿床应为大陆溢流玄

4 矿床成因及成矿潜力评价

表 5 清明山铜镍硫化物矿床与美国 Duluth 铜镍硫化物矿床特征对比分析

Table5 Comparative analysis of Cu-Ni sulfide the Qingmingshan and Duluth, USA deposits

岩体名称	Duluth complex	清明山
岩体性质	镁铁质杂岩体	镁铁质杂岩体
大地构造位置	陆内裂谷 (Naldreet,1999)	大陆边缘裂谷
成因有关岩浆	与镁铁质-超镁铁岩体和溢流玄武岩有关(Naldreet,1999)	与镁铁质–超镁铁岩体和溢流玄武岩有关
区域岩性分布	玄武岩、镁铁质侵入岩,基性岩脉群、太古代花岗岩、低绿片岩 相(泥岩、粉砂岩、硬砂岩)	玄武岩、镁铁质侵入岩,基性岩脉群、元古代 花岗岩、低绿片岩相(泥岩、粉砂岩、硬砂岩)
年龄	1.12Ga(Re-Os, Ripley et al., 1999)	1667+247Ma (Rb-Sr)(董宝林,1987)
矿床储量(镍品位)	1238wt,Ni:0.2%,Cu:0.33%(李文渊,2007)	探明1wt(Ni:0.2~0.5%,Cu:0.1~0.3%)
矿石特征	稀疏浸染矿石为主,块状矿石少(Naldreet,1999),金属矿矿物 为磁黄铁矿、镍黄铁矿、黄铜矿	稀疏浸染矿石为主,块状矿石少;金属矿矿物 为磁黄铁矿、镍黄铁矿、黄铜矿
含矿岩体地球化学成分	SiO ₂ :40.51~47.18%, Al ₂ O ₃ 含量 8.82~17.88%, MgO 含量 3.32~8.34%, TiO ₂ 含量 0.33~3.85; K ₂ O 含量 0.32~1.09 (Patridge River Intrusion)(Edward <i>et al.</i> ,2007)	SiO ₂ 含量为 42.68 ~ 50.63%, Al ₂ O ₃ 含量 6. 62 ~ 17.54%, MgO 含量从 6.88 ~ 25.12%, K ₂ O 含量 0.052 ~ 2.54%, TiO ₂ 含量 0.326 ~ 0.63%;
同位素	$\delta^{34} S_{:}{-}1.4 \sim 10.5\% ($ Edward et al. ,2007) $\delta^{18} O_{:}5.2 \sim 7.4\% ($ Edward et al. ,2007)	δ ³⁴ S:4.52~17.04‰(毛景文,2001)

武质岩浆演化后期岩浆分异阶段形成的岩浆铜镍硫 化物矿床(朱炳泉,2003);因此铜镍硫化物矿床的 形成与玄武岩也有成因上的密切联系,其地质背景、 地质特征和地球化学特征和与玄武岩有关的美国 Duluth 岩浆 Cu-Ni 硫化物矿床基本一致(表5)。

Duluth Cu-Ni 硫化物矿床大地构造位置位于北 美*陆内裂谷²⁷,由与溢流玄武岩同源的镁铁质侵入 岩熔离分异形成,从底部向上镁铁质岩体可以分为 橄长岩-辉长岩-斜长岩等岩相,岩相分带较好,Cu-Ni 矿体分布在橄长岩中,资源量 1238wt,平均含铜 0.33%, 镍0.2%(李文渊, 2007)。

4.2 成矿潜力评价

(1) 控矿因素及成矿条件

铜镍硫化物矿床的形成与镁铁质-超镁铁岩体 及玄武岩的形成、分布密不可分,首要控矿因素为控 岩构造,清明山铜镍矿位于区域上四堡断裂旁侧,四 堡断裂是形成于扬子板块西南边缘、始于元古代的 壳源断裂,控制着区域上玄武岩、镁铁质-超镁铁侵 入岩的分布与形成,壳源断裂为镁铁质-超镁铁岩、 岩浆铜镍硫化物矿床的形成提供了热动力、迁移通 道和定位空间;其次为岩性控制因素,形成铜镍矿的 清明山岩体岩体规模较大,为了复式杂岩体,具有分 异演化较好的成矿岩石组合,富 MgO 贫 SiO,、K,O、 TiO,;微量元素、稀土特征表明成矿的镁铁质-超镁 铁岩来源于幔源,显示出较好的成矿条件。

(2) 综合物探异常

清明山矿床区域上处于重力、磁异常梯度带和 地幔、地壳变化带上;矿区航磁^① $\Delta T_{max} = 80$ 伽玛, ΔT_{min} = -45 伽玛,磁化率变化范围从 17~66500 伽 玛,几何均值 220~3032 伽玛,异常南北宽 2km,东 西长12km, 异常范围大, 异常强度大, 梯度陡(图 9),说明镁铁质岩体空间范围和向深部延伸较大。

(3) 综合化探异常

清明山矿区化探异常 $^{\circ}$ Cu 平均含量 127×10^{-6} . 最高异常峰值 276 ×10⁻⁶; Ni 平均含量158.4 ×10⁻⁶, 最高异常峰值 200 ×10⁻⁶、Cr 平均含量 192.6×10⁻⁶ 最高异常峰值 300 ×10⁻⁶; Co 平均含量 42.9 ×10⁻⁶, 最高异常峰值 53.8×10⁻⁶;Zn 平均含量 122 ×10⁻⁶, 最高异常峰值 139.7×10⁻⁶。化探异常表现为一个 典型的与镁铁质-超镁铁岩有关的 Cu、Ni、Cr、Co、Zn 综合异常,异常规模大、强度高。

综上所述,清明山岩浆铜镍硫化物矿床是一种 镁铁质岩浆熔离作用形成的硫化物矿床,矿区内已 控制矿体长度超过1500m,斜深超过560m(图8), 向下延深稳定:地球物理、地球化学异常强度大,范 围宽:矿床特征与美国 Duluth(镍资源量 1238 万吨) (李文渊,2007)铜镍硫化物矿床相同;形成岩浆铜 镍硫化物矿床的镁铁质--超镁铁岩体与玄武岩为同 一源区的岩浆不同阶段形成的产物,区域上玄武岩、 镁铁质-超镁铁侵入岩体分布面积超过 1000 km^2 .已 形成了大的火成岩省,大的火成省可以形成大的铜 镍硫化矿床,如镁国 Duluth Cu-Ni 硫化物矿床,俄 罗斯的 Noril'sk Cu-Ni 硫化物矿床;具备了 Keays (1995,1997)认为形成大规模的岩浆 Cu-Ni 硫化物 矿床的的条件,铜镍硫化物矿床成矿及资源潜力巨 大。

4.3 结论

清明山岩浆铜镍硫化物矿床是一种与玄武岩有 成因联系的岩浆硐镍硫化物矿床类型,地质特征、地 球化学特征显示成矿及资源潜力巨大。

「注释]

① 第二区调队. 1987. 广西宝坛地区区域地质调查报告(矿产部分) 696

② 桂林矿产研究院, 2006. 广西罗城县满洞地区铜镍多金属矿普查 总结报告

[References]

- Chen Jun, Wang He-nian. 2004. Geochemistry [M]. Beijing: Science Publishing House: 357-359 (in Chinese)
- Dong Bao-ling. 1987. The new discover of research about Rb-Sr isotope age of metamorphose during Mesoproterozoic in South China [J]. Guangxi Regional Geology, (6):20-22 (in Chinese with English abstract)
- Edward M. Ripley. Nur Iskandar Taib. Chusi Li. Craig H. Moore. 2007. Chemical and mineralogical heterogeneity in the basal zone of the partridge river intrusion; implications for the origin of Cu - Ni sulfide mineralization in the Duluth complex, midcontinent rift system [J]. Contrib Mineral Petrole, 154:35-54
- Huang Jie, Liu Yao-hui, Yang Ming-de. 2007. Copper and nickel mineralization of Gaobangshan intermediate to basic rock in north Guangxi [J]. Mineral Resources and Geology, 21(3):241-244 (in Chinese with English abstract)
- Keays R R. 1997. Requirents for the formation of giant Ni-Cu-PGE sulfide deposits: The role of magma generation Transaction of the American [J]. Geophysical Union (EOS), 78-99
- Keays R R. 1995. The role of komatiitic and picritic magmatism and Ssaturation in the formation of ore deposits[J]. Lithos, 34:1-18
- Li Wen-yuan. 2007. The Current status and prospect on magmatic Ni-Cu -PGE deposits [J]. Northwestern Geology, 40(2):1-28(in Chinese with English abstract)
- Mao Jing-wen. 2001. Igneous rock series and metallogenic series of tin polymetallic deposits in Jiuwandashan - Yuanbaoshan region, north Guangxi [D]. Beijing: Geology Science and Technology Publishing House:1-199(in Chinese with English abstract)
- Mao Jing-wen, Du An-dao. 2001. 982 Ma Re-Os age of Cu-Ni ores from the Baotan Cu-Ni sulfide deposit in Guangxi and its geological implications [J]. Science in China (Series D), 31 (12):992-998 (in Chinese)
- Naldrett A J. 1999. World-class Ni-Cu-PGE deposits: key factors in their genesis [J]. Mineralium Deposita, 34:227-240
- Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R. S. (ed.). Andesits. Chichester [J]. Wiley, 525-548
- Pearce J A. 1983. Role of the sub-continental lithosphere in magam genesis at active continental margins. in: Hawkesworth C J. and Norry M J. (eds.), Continental Basalts and Mantle Xenoliths [J]. Nantwich Shiva:230-249
- Ripley E M, Lambert D D, Frick L R. 1999. Re Os, Sm Nd, and Pb isotopic constraints on mantle and crustal contributions to magmatic sulfide mineralization in the Duluth Complex [J]. Geochim Cosmochim Acta.62.3349-3365
- Rollinson Hugh R. 1993. Using geochemical date: evaluation, presentation, Interpretation. Singapore[J]. Longman Publisheres: 342-352

- Song Shu-he, Tang Zhong-li, Ren Rui-jing, Xue Zhen-rui, Mu Yao-ka. 1993. China Deposit [M]. Beijing: Geology Science and Technology Publishing House (Volume I):249-251 (in Chinese with English abstract)
- Tang Zhong-li, Yan Hai-qing, Jao Jian-gang, Pan Zhen-xing. 2007. Regional metallogenic controls of small – intrusion – hosted Ni – Cu (PGE) ore deposits in China[J]. Earth Science Frontiers, 14(5): 92-103(in Chinese with English abstract)
- Zhang Ben-ren, Fu Jia-mo. 2005. Advances in Geochemistry [M]. Beijing: Chemical Industry Publishing House: 200-217 (in Chinese with English abstract)
- Zhou Jin-cheng, WangXiao-Lei, Qiu Jian-sheng, Gao Jian-shen. 2003. Lithogeochemistry of Meso- and Neoproterozoic mafic-altramafic, rocks from northern Guangxi[J]. Acta Pertrologica Sinica, (19):19 -18(in Chinese with English abstract)
- Yan Hai-qing, Tang Zhong-li, Jiao Jian-gang, Gen Ke, Pan Zhen-xing. 2005. Petrologica and geochemical characteristics of Yejili mafic-ultramafic Intrusion, Inner Mongolia [J]. Geoscience 19(4): 515-521 (in Chinese with English abstract)
- Zhu Bing-quan. 2003. Contintal flood basalts and copper deposits of the Keweenwan type[J]. Geology-geochemistry, 31(2):1-7(in Chinese with English abstract)

[附中文参考文献]

陈 骏,王鹤年.2004. 地球化学[M]. 北京:科学出版社:357-359

- 董宝林. 1987. 中国南方前寒武浅变质岩系 Rb-Sr 同位索年代学研究 有新突破[J]. 广西区域地质,(6):20-22
- 黄 杰,刘耀辉,杨明德.2007.桂北高邦山中基性岩体的铜镍成矿性 研究[J].矿产与地质,21(3):241-244
- 李文渊. 2007. 岩浆 Cu-Ni-PGE 矿床研究现状及发展趋势[J]. 西北 地质,2:1-28
- 毛景文.2001.桂北九大山-元宝山地区火成岩列和锡多金属矿成矿 系列[D].北京:北京科学技术出版社:18-19
- 毛景文,杜安道.2001.广西宝坛地区铜镍硫化物矿石 982Ma Re-Os 同位素年龄及其地质意义[J].中国科学(D辑),31(12):992-998
- 宋叔和,汤中立,任端进,薛增瑞,母耀开.1993.中国矿床[M].北京: 北京科学技术出版社(上册),(1):249-251
- 汤中立,闫海卿,焦建刚,潘振兴.2007.中国小岩体镍铜(铂族)矿床 的区域成矿规律[J].地学前缘,14(5):092-103
- 张本仁,傅家谟.2005.地球化学进展[M].北京:化学工业出版社: 200-217
- 周金城,王孝磊,邱检生,高剑生.2003.桂北中-新元古代镁铁-超镁 铁岩的岩石地球化学[J].岩石学报,(19)1:9-18
- 闫海卿,汤中立,焦建刚,耿 科,潘振兴.2005.内蒙古野芨里镁铁质
 -超镁铁质岩体的岩石地球化学特征[J].现代地质,19(4):515
 -521
- 朱炳泉. 2003. 大陆溢流玄武岩成矿体系与基韦诺 (Keweenaw)型 铜矿床[J]. 地质地球化学. 31(2): 1-7

Analysis of Geologic and Gechemical Characteristic and Potential of Cu-Ni Sulfide Deposits Associated with Overflow Basalt: A Case Study of the Qingmingshan Cu-Ni Sulfide Deposit, Guangxi Province

LIU Ji-shun, YANG Zhen-jun, DOU Song, YIN Li-jun, KANG Ya-long, YANG Li-gong

(1. School of Geoscience and Environmental Engineering, Central South University Changsha 410083;

2. Luocheng Jishenyuan Minning Limited Company, Guangx Province 546400)

Abstract: In the Qingmingshan Cu–Ni sulfide deposit of Luocheng county, Guangxi Provinc, mafic–ultramafic volcanic and intrusive rocks are widely distributed, closely related to each other in space and time, both of which are rich in MgO, and poor in SiO₂, TiO₂, K₂O. They have same characteristics of abundance of the chemical composition and trace elements rare earth, with the relation in causes and the characteristics of sequenctial evolution. The ore –bearing mafic–ultramafic rock contains SiO₂:42. 68% ~ 50. 63%, Al₂O₃ 6. 62% ~ 17. 54%, MgO; 6. 88% ~ 25. 12%, K₂O; 0. 052% ~ 2. 54%, TiO₂:0. 326 ~ 0. 63%, respectively, with trace elements enrich in Rb and Ba, and lossing in Ta and Nb. Rare earth elements have medium– grade abundance of Σ REE, Σ REE varying from 27. 56(10⁻⁶) to 52. 36(10⁻⁶), Σ LREE / Σ HREE from 7. 17 to 12. 31, (La / Yb)_N from 2. 48 to 8. 17, δ Eu from 0. 93 to 1. 43, enrichment in abundances of LREE, right–leaning on distribution patterns, no δ Eu negative anomalies, δ^{34} S value from 4. 52‰ to 17. 04 ‰. Mafic–ultramafic rocks and nickel–copper sulfide ore mostly originate from the mantle material and mixed by crust, have some geological and geochemical characteristics comparable with Duluth copper–nickel sulfide deposits in the United States. Thus it should be one new domestic Cu–Ni sulfide deposit related closely with overflow basalt in cause, representing a giant potential of resources.

Key words: Copper-nickel sulfide deposit, mafic-ultramafic, basalt, Qingmingshan