地质 · 矿床

桂东北煌斑岩地球化学特征及其成因研究

鹿 坤¹,冯佐海²,侯读杰¹,李晓峰³

(1. 中国地质大学(北京)能源学院,北京 100083; 2 桂林工学院资源与环境工程系,桂林 541004;
 3. 中国地质科学院矿产资源研究所,北京 100037)

[摘 要] 桂东北煌斑岩 SD₂ 含量主要在 33.74% ~48.14%之间,属基性 - 超基性范围,为钙碱性 岩系、钾质 - 超钾质煌斑岩;地球化学表明,桂东北煌斑岩以富集大离子亲石元素和轻稀土元素,而亏损 高场强元素 (Ta - Nb - Ti)为特征,轻、重稀土具有较好的分馏。结合元素地球化学和地质发展史研究表 明,桂东北煌斑岩为富含稀土元素的俯冲带流体交代过的富集地幔部分熔融所产生的岩浆,在上升过程 中受到部分地壳混染的产物。

[关键词] 煌斑岩 地球化学特征 部分熔融 地壳混染 桂东北 [**中图分类号**] P588 12; P595 [**文献标识码**] A [**文章编号**] 0495 - 5331 (2009) 02 - 0008 - 06

Lu Kun, Feng Zuo-hai, Hou Du-jie, et al Geochem istry and origin of kamprophyre in the northeast of Guangxi [J]. Geology and Exploration, 2009, 45(2):8 - 13.

在南岭地区,大致以北纬 25 为界,北部地壳加 厚、减薄相当明显,北东、北北东向构造发育;南部地 壳厚度变化较小,以东西向构造为主导。研究区正 位于这南北相异的深部构造分界附近。已有的研究 成果显示[1-3],在我国南岭东段已发现多处火山喷 发点,并形成火山断裂带,据此人们对南岭东段大地 构造环境开展了较为深入的研究,并已取得了重要 的进展。但中 - 基性火山岩在南岭花岗岩带西段却 少有报道。桂东北煌斑岩是新近发现的一处基性 -超基性火山岩体群。煌斑岩类岩石起源于超深环 境,它们是了解地幔及其变化的窗口,桂东北煌斑岩 的发现为了解南岭西段地质演化的深部地质作用过 程提供了很好的依据。文章对桂东北煌斑岩岩石 学、地球化学特征及其成因进行了深入研究,对桂东 北中生代巨量花岗岩的成因机制乃至整个南岭西段 大地构造环境的厘定均具有十分重要的理论意义。

1 地质概况及岩石学特征

桂东北煌斑岩主要出露于广西富川县莲山镇的 鲁洞 - 荆洞尾地区。在大地构造位置上,该区位于 欧亚板块的东南侧,北西为扬子板块,南东为华夏板 块(图 1a),该区恰位于上述两板块的最终拼合带 上。鲁洞 - 荆洞尾地区出露地层较简单,仅有泥盆 系和第四系,其中泥盆系亦仅有上统 (图 1b)。

桂东北煌斑岩呈脉状产出,共有 7条 (图 1b), 走向有北东和北西向两组,以北东向为主,岩脉大多 倾向南东,倾角均较陡,多数为 60 左右。煌斑岩脉 多为小侵入体,长几米到上百米,宽一般在 1~2 m 到十几米之间,部分呈交织复合或放射状产出。岩 脉以岩墙扩展形式出现,与围岩接触带变质较弱,围 岩捕虏体多为棱角状,岩体机械贯入作用强,同化混 染弱,应为浅成相。煌斑岩边部与围岩接触处,冷凝 边不明显,未见有明显的烘烤边,与围岩接触带变质 较弱,是岩浆快速冷却的产物。

桂东北煌斑岩为灰绿 ~灰黑色,风化后则呈黄 褐色,疏松。多具典型煌斑结构,块状构造为主,也 常见气孔及杏仁构造。斑晶主要由云母(25%左 右)和辉石(10%左右)组成,其次是橄榄石(0~ 5%);基质主要为斜长石(35%左右)、辉石(10%左 右),以及少量他形石英(1%左右)和碳酸盐(1%左 右);副矿物常见的有磁钛矿、钛铁矿、锆石等。岩 石中还有少量杏仁体,呈椭圆形 -近椭圆形,含量 2%~3%,大小 0.5~3.0 mm不等,被绿泥石、方解 石等充填。整个岩石具碳酸盐化和轻微绿泥石化,

[收稿日期] 2008 - 06 - 10; [修订日期] 2008 - 08 - 15。[责任编辑] 杨 欣。 [基金项目]: 国家自然科学基金项目(编号:40772126)和广西自然科学基金项目(编号:桂科自 0542001)联合资助。 [第一作者简介] 鹿坤(1978年—),男,2006年毕业于桂林工学院,获硕士学位,在读博士,矿产普查与勘探专业。

0

图 1 桂东北鲁洞 - 荆洞尾地质简图

Fig 1 Simplified geology map of Ludong and Jingdongwei A reas in northeast Guangxi

1—第四系全新统;2—第四系更新统;3—上泥盆统东村组;4—煌斑岩 脉及编号;5—地层界线;6—正断层;7—地层产状;8—采

样点及样品号

1—Holcene; 2—Pleistocene; 3—Dongcun Group of Upper Devonian; 4— Lamprophyre dykes and number, 5—Strata Boundary; 6—Normal fault; 7— Strata Occurrence; 8—Sample collection point and sample number

少量暗色矿物被金红石取代。按国际地科联的分类 方案,该区煌斑岩为云斜煌岩。

- 2 地球化学特征
- 2.1 主要元素

0

煌斑岩是最易蚀变的岩石类型之一,不可避免 的对样品精度会有影响,因此在利用岩石化学讨论 其所属系列、类型之前,需对相关资料进行调整。该 区 CO₂的含量高于国内外同类型岩石,且岩浆固结 以后的次生蚀变作用(如蛇纹石化等)已改变了原 岩的 H₂O含量,因此,笔者结合该区煌斑岩野外地 质、镜下鉴定、化学成分特征及大多数研究者的通常 做法^[4,5],扣除 CO₂和 H₂O的含量,然后把其它各项 重新换算成100%。从调整后的化学成分来看(表

表 1	桂3	乐北煌斑岩调整后岩石化学成分 (_B /%)
Table	e 1	Adjusted major elements composition of
lan	ı pro	ophyres in northeast Guangxi (/%)

样品号	LD01 - 1	LD02 - 1	LD03 - 1	LD04 - 2	LD05 - 1	LD06 - 1
SD_2	43. 50	60.67	33. 74	34.86	48.14	38.04
TO_2	0.20	0.84	0.41	2.80	2. 99	0.56
Al_2O_3	4.74	20.83	8.79	15. 17	17.37	10.77
Fe_2O_3	1.11	0.56	2.39	4.95	3. 31	5. 79
FeO	5. 41	1.00	3. 15	6. 29	9.18	6.67
MnO	1.00	0.02	0.68	0.20	0.13	0.99
MgO	15. 65	9.55	18.14	29.79	7.16	13. 52
CaO	27.85	1.37	30.62	4. 05	8. 30	21.21
Na ₂ O	0.17	0.17	0.12	0.24	0.16	0.16
K_2O	0.58	4.75	1.58	0.60	2. 20	1.59
P_2O_5	0.06	0.10	0.12	0.75	0.72	0.38
М	83. 88	94.48	91.21	89.51	58.41	78.48
AR	1.05	1.57	1.09	1.09	1.20	1.12

注:M = 100 ×N (Mg) /N (Mg + Fe²⁺); AR = (Al₂O₃ + CaO + K₂O + Na₂O) / (Al₂O₃ + CaO - K₂O - Na₂O) (其中氧化物均为 wt%)

图 2 煌斑岩的 N(K)/N(Al) - N(K)/N(K +Na) 图(据路凤香等^[7])

Fig 2 N(K) /N(Al) - N(K) /N(K+Na) diagram of lamprophyres (After Lu Feng-xiang et al ^[7])

1-LD01 - 1样品; 2-LD02 - 1样品; 3-LD03 - 1样品; 4-LD04 -2样品; 5-LD05 - 1样品; 6-LD06 - 1样品; -納质煌斑岩; -弱钾质煌斑岩; --钾质煌斑岩; -超钾质煌斑 岩; --过钾质煌斑岩; --钾镁煌斑岩

1—Sample of LD01 - 1; 2—Sample of LD02 - 1; 3—Sample of LD03 -

1; 4—Sample of LD04 - 1; 5—Sample of LD05 - 1; 6—Sample of LD06 - 1; —Sodic lamp rophyre; — Low-potassic

lamp rophyre; —Potassic lamp rophyre; —U ltrapotassic lamp rophyre; —Perpotassic lamp rophyre; —Lamp roite

1),桂东北煌斑岩 SD₂ 含量除 LD02 - 1 样品在 60.67%外,其余在 33.74% ~48.14%之间,故该区 煌斑岩主要属基性 - 超基性范围。

图 3 煌斑岩的 AR - w (SO₂)图 (据 W right^[6]) 图中符号所代表样品编号同图 2 Fig 3 AR - w (SO₂) diagram of lamp rophyres (After W right^[6]) Sample numbers in the figure are the same with fig 2 —钙碱性系列; —碱性系列; —过碱性系列 - Calc - alkalic series; - Peralkalic series

按路凤香等^[7]的 N (K) /N (Al) - N (K) /N (K + Na)划分标准,该区煌斑岩除少量样品落在钾质煌斑 岩区外,其余大部分样品落在超钾质煌斑岩区 (图 2)。按 W right^[6]提出的 AR (碱度率) - SO₂ 图解法 划分,该区煌斑岩均落在钙碱性岩区 (图 3)。故桂东 北煌斑岩为钙碱性岩系、钾质 - 超钾质煌斑岩。

2.2.1 过渡元素

从表 2可见,桂东北煌斑岩过渡元素含量变化 范围较宽,除样品 LD01 - 1的 Sc和 V含量稍偏低 外,其余皆在世界钙碱性煌斑岩范围内。

桂东北煌斑岩过渡元素以球粒陨石^[8]标准化的分配模式为相似的"W型(图4),与 Jagoutz等^[9]

图 5 桂东北煌斑岩亲石元素分配模式

图中 1 - 6符号同图 2;7 - N - MORB (据 Sun等^[10]) Fig 5 N-normalized lithophile element patterns of lamprophyres Sample numbers of one to six in the figure are the same with fig 2, 7 - N+MORB values are from Sun et al

图 6 桂东北煌斑岩稀土元素分配模式 (球粒陨石据 Boynton^[13])

图中符号所代表样品编号同图 2

Fig 6 Chondrite - normalized REE distribution patterns of lamprophyres(Chondrite values are from Boynton^[13]) Sample numbers in the figure are the same with fig 2

估算的原始地幔过渡元素含量相比, Ti、V、Mn相对 富集,深源元素 Cr、Co、Ni则强烈亏损,略高或大致 相等的是 Zn,这与许多幔源基性 - 超基性岩的过渡 元素分配模式相似。

222 亲石元素

虽然该区煌斑岩亲石元素含量变化范围较宽 (表 2),但绝大部分都在世界钙碱性煌斑岩范围内。

研究区煌斑岩以 Sun 等^[10]报道的 N - MORB (其中 Sc, Cr, N i含量为 Pearce^[11]报道的 MORB 值) 标准化不相容元素分配模式中可以看出 (图 5),桂 东北煌斑岩具有相似的分配模式,总体表现为"驼 峰 型,与 Rock^[12]统计的钙碱性煌斑岩不相容元素 特有的"Ta - Nb - Ti(TNT) 资异常分配模式基本

样品号	LD01 - 1	LD02 - 1	LD03 - 1	LD04 - 2	LD05 - 1	LD06 - 1	世界钙碱性 煌斑岩范围
Sc	3. 69	12.6	5. 39	13. 5	14. 4	7. 31	9~35
Ti	0.12	0.51	0.24	1.68	1.79	0.34	
v	36. 6	194	123	136	149	160	69 ~ 300
Cr	30.7	134	119	52.8	52. 9	159	10~1757
Mn	0.78	0.02	0.53	0.15	0.10	0.77	
Fe	4. 99	1.17	4. 12	8.36	9. 45	9. 24	
Co	11.4	11.9	8.6	26.7	27. 3	13. 9	8~76
Ni	19. 3	94. 5	37	44. 1	50.6	54. 1	2~563
Cu	12. 2	24.8	11.8	27. 3	30.5	15. 1	3 ~ 329
Zn	45. 8	37. 5	40.8	85. 2	101	48.2	30 ~ 368
Sr	140	156	106	177	150	102	32 ~ 7275
Rb	14. 8	151	37. 7	17. 9	59	42. 5	4~950
Ba	45. 7	792	66. 5	496	226	75.4	71 ~9024
K	0.48	3. 94	1.31	0.50	1.83	1.32	
Р	0.02	0.04	0.05	0.33	0.31	0.16	
U	2.2	6. 01	3. 79	2. 22	1.75	3. 62	3~33
Th	3. 76	25. 3	6.49	8. 07	7. 9	9	1~268
Nb	3. 62	18.7	6. 71	68. 7	68. 6	9. 03	4~150
Та	0.3	1.51	0.51	4. 3	4. 28	0.7	
Zr	46. 2	176	75. 6	245	239	104	22 ~ 1645
Hf	1.24	4. 87	2.02	5. 73	5.67	2. 77	5~28

表 2 桂东北煌斑岩过渡 (亲石)元素含量 (_B /10⁻⁶) Table 2 Transition element contents of lam prophyres in northeast Guangxi(_B /10⁻⁶)

一致。桂东北煌斑岩亲石元素与 N - MORB 相比, 富集 Sr - Ce之间的元素,亏损 Ti - Ni之间的元素, 而 P - Sm之间的元素大致相当或略有富集。

2.3 稀土元素

从表 3可见,研究区煌斑岩轻稀土元素含量范 围较宽,而重稀土元素含量则相对稳定,w(REE) (包括Y)为(81.44~277.09)×10⁻⁶,其中, w(LREE)为(55.22~237.21)×10⁻⁶,w(HREE) (包括Y)为(22.82~47.03)×10⁻⁶,w(LREE)/w (HREE)比值在2.11~5.95之间,且与原始地幔^[10] 相比,该区煌斑岩稀土元素均相对富集,表明煌斑岩 的源区地幔相对富集稀土元素。

该区所有煌斑岩球粒陨石^[13]标准化后的稀土 分配模式表现为相似的右倾轻稀土富集型(图 6), (La/Yb)_n = 7.55~16.54;轻、重稀土元素具有较好 的分馏,(La/Sm)_n = 3.01~5.16,(Gd/Yb)_n = 1.55 ~2.42;大部分具有 Eu负异常,除 LD04 - 2和 LD05 - 1分别为 1.00和 1.03之外,其余皆在 0.51 ~0.69之间,主要在 0.6附近;Ce异常不明显, Ce =0.9~0.97。

3 桂东北煌斑岩成因

目前人们已就煌斑岩的生成机理提出了多种成 因解释,其中煌斑岩的幔源加陆壳混染成因模式也 正逐渐为大多数学者所公认^[14-18]。虽然该区煌斑 岩岩脉中没有找到幔源包体,但从文章地球化学讨 论中可推测其成因为幔源加陆壳混染模式。

 1)该区煌斑岩与原始地幔相比富集 LLE、 HFSE,球粒陨石标准化稀土分配模式为轻稀土富集型,MORB标准化不相容元素分配模式为不相容元 素强烈富集型,这些特征均是源于交代地幔岩浆的 具体表现。

2) 煌斑岩稀土总量较高,w(REE) (包括Y) 为(81.44~277.09) ×10⁻⁶,w(LREE) /w(HREE) 值较大,且为轻稀土富集型,这进一步证实了研究区 深部经历过地幔交代作用。

(3) 卤族元素 CL F含量很高, F的含量可达 530 ×10⁻⁶, Cl可达 138 ×10⁻⁶,也同样反映了该区 煌斑岩深部源区存在地幔交代作用^[19]。

(4) 该区煌斑岩的 La/Sm - La呈倾斜线关系(图 7), Treuil²⁰论证了岩浆成因如为部分熔融,其

轻重稀土比值与轻稀土含量呈倾斜线关系。由此可 以推测该区煌斑岩成因为地幔部分熔融。

表 3 桂东北煌斑岩稀土元素丰度 (_B/10⁻⁶)

Table 3 Rare earth element analysis result of

kam prophyres $(_B/10^{-6})$

样品号	LD01 - 1	LD02 - 1	LD03 - 1	LD04 - 2	LD05 - 1	LD06 - 1
La	13. 1	60.5	19.5	57.4	49. 9	25. 5
Ce	24. 3	112	38	106	96. 9	48.3
Pr	3. 01	12.6	4.39	11	10.4	5. 43
Nd	11.4	43. 6	16.5	40.6	38.8	20.2
Sm	2.74	7.38	3. 32	7.61	7.37	3. 92
Eu	0.67	1.13	0.55	2.42	2.46	0.75
Gd	3. 25	5.93	2.91	7.03	7.11	3. 7
Tb	0.52	0.7	0.41	0.95	0.99	0.54
Dy	2.7	4. 03	2.35	5. 2	5.49	3. 27
Но	0.49	0.82	0.47	0.98	1.02	0.68
Er	1.35	2.59	1.5	2.79	2.88	2.03
Tim	0.18	0.37	0.21	0.38	0.36	0.28
Yb	1.17	2.56	1.37	2.34	2.43	1.93
Lu	0.16	0.38	0.2	0.34	0.35	0.29
Y	16.4	22. 5	13.4	24.4	26.4	21.2
REE	81.44	277. 09	105. 08	269.44	252.86	138. 02
LREE	55. 22	237. 21	82.26	225. 03	205. 83	104. 1
HREE	26. 22	39. 88	22.82	44. 41	47.03	33. 92
w (LREE) / w (HREE)	2. 11	5. 95	3. 60	5. 07	4. 38	3. 07

注:由国家地质实验测试中心测试,2003.11。

图 7 桂东北煌斑岩 La/Sm - La关系图 (图中符号所代表样品编号同图 2)

Fig 7 The correlation diagram for La/Sm - La Sample numbers in the figure are the same with fig 2

(5) V,Ni,Co含量相对大小具 V > Ni > Co的 关系,表明其具有较低程度的结晶分异作用^[21]。

(6) 该区煌斑岩的 "Pearce地球化学模式",总 体表现为 "驼峰型(图 6),表明源区富集过程或岩 浆上升过程中受过地壳混染^[22],且与 Rock^[12]统计 的钙碱性煌斑岩不相容元素特有的"Ta-Nb-Ti (TNT) 负异常分配模式基本一致,说明了该区源区 遭受了地壳混染。正如 Rock所说,煌斑岩的 Ta -Nb - Ti负异常与俯冲环境之间不是一一对应关系 是可以肯定的,但还没有具 Ta - Nb - Ti负异常的年 轻煌斑岩超出俯冲环境。该区煌斑岩穿切上泥盆 统,成岩时代相对年轻,从这一点上看,其 Ta - Nb -Ti负异常作为俯冲环境的判别标志是可靠的,而且 从地质构造发展史看,该区经历过俯冲环境的观点 已被大多数地学工作者所接受^[23~25]。引起该区煌 斑岩 Ta - Nb - Ti负异常的原因可能主要是相对贫 Ta - Nb - Ti俯冲沉积物混染了地幔。

(7)该区煌斑岩的 Nb/Ta比值为 12 07 ~
16 03,比原始地幔值 (17.5 ±2.0)略低或相似, Zr/Hf比值为 36 14 ~ 42 76,略高于原始地幔值 (36.27),但远高于大陆地壳值 (11),这些表明该区 煌斑岩受到大比例的地壳混染的可能性不大^[26]。

综上所述,该区煌斑岩为富含稀土元素的俯冲 带流体交代过的富集地幔部分熔融所产生的岩浆, 在上升过程中受到部分地壳混染的产物。

[参考文献]

 [1] 李武显,周新民.古太平洋岩石圈削减与中国东南部晚中生代 火成岩成因-岩石圈消减与玄武岩相结合模式的补充证据
 [J].大地构造与成矿学,2001,25(1):55-63.

LiWu-xian, Zhou Xin-min Subduction of the paleo-pacific plate and origin of late Mesozoic igneous rocks in southeastern China— Some supplement evidences for the model of lithosphere subduction and underplating of mafic magna [J]. Geotectonic et Metallogenia, 2001, 25(1):55 - 63.

[2] 耿文辉.浙江东部火山岩型银矿床地球化学特征 [J].地质与勘探,1995,31(4):14-19.

Geng Wen-hui Geochem ical Characteristic of Volcanic Type Ag Mineral Deposit in Eastern Zhejiang [J]. Geology and Exploration, 1995, 31 (4) : 14 - 19.

[3] 陈培荣,华仁民,章邦桐,等.南岭燕山早期后造山花岗岩类:
 岩石学制约和地球动力学背景[J].中国科学(D辑). 2002, 32
 (4):279-289.

Chen Pei-rong, Hua Ren-min, Zhang Bang-tong, et al Early Yanshan post-orogenic granitoids in the Nanling region—Petrological constraints and geodynamic settings[J]. Science in China (Series D), 2002, 32 (4): 279 - 289.

- [4] Perring C S, Rock N M S, Golging S D, et al Criteria for the recognition of metamorphosed or altered lamprophyres; a case study from the Archaean of Kambalda, Western Australia [J]. Precamb Res, 1989, 43: 215 - 237.
- [5] Currie k L, Williams P R. An Archean cala-alkaline lamprophyre suite, northeastem Yilgam Block, Western Australia [J]. Lithos, 1993, 31: 33 - 50.

[6] Wright J B. A simple alkalinity ratio and its application to ques-

tions of nonorogenic granite genesis [J]. Geol Magaz, 1969, 106: 370 - 384.

[7] 路凤香,舒小辛,赵崇贺.有关煌斑岩分类的建议[J].地质科技情报,1991,10(增刊):55-62.
 Lu Feng-xiang, Shu Xiao-xin, Zhao Chong-he A suggestion on

classification of lamprophyres[J]. Geological Science and Technology Information, 1991, 10 (Sup.): 55 - 62.

- [8] Mason B. Handbook of elemental abundances in meteorites [A].
 In: Gordon & Breach [C]. New York, 1977: 80 95.
- [9] Jagoutz E The abundances of major, minor and trace elements in the Earth 's as derived from primitive ultramafic nodules[M]. Proc Lunar Sci conf, 1979: 2031 - 2050.
- [10] Sun S S,McDoonough W. Chemical and isotopic systematics of oceanic basalts; implication for mantle composition and processes
 [J]. Ceol Soc Spec Publ, 1989, 42: 313 - 345.
- [11] Pearce J A, Harris N B W, Tindle A G Trace element discrimination diagrams for the tectonic interpretation of granite rocks[J]. J Petrol, 1983, 35: 956 - 983.
- [12] Rock N M S, Hunter R H. Late Caledonian dyke-swarm of northem Britain; spatial and temporal intimacy between lamp tophyric and granitic magnatism around the Ross of Mull Pluton, Inner Hebrides [J]. Geol Rundsch, 1987, 76: 805 - 826.
- [13] Boynton W V. Cosmochemistry of the rare earth elements; meteorite studies [J]. Dev Geochem, 1984, 2: 63 - 114.
- [14] Menzies M A, Hawksworth C J. Mantle metasomatism [M]. Academic Press, 1987: 200 - 250.
- [15] Ujike O. Probable mineralogic control on the mantle metasomatic fluid composition beneath the Northeast Japan arc [J]. Geochim Cosenochim Acta, 1988, 52: 2037 - 2046.
- [16] Nielson J E, Budahn J R, Unruh D, et al. Actualistic models of mantle metasomatism [J]. Cosmochim Acta, 1993, 57: 105 - 121.
- [17] 申玉科,邓 军,徐叶兵.煌斑岩在玲珑金矿田形成过程中的 地质意义[J].地质与勘探,2005,41(3):45-49.
 Shen Yu-ke, Deng Jun, Xu Ye-bing Geological significance of lamprophyre during gold mineralization in the Linglong ore field
 [J]. Geology and Exploration, 2005,41(3):45-49.

[18] 季海章,陈殿照.胶东地区煌斑岩与金矿关系初探[J].地质

与勘探,1992,28(2):15-18.

Ji Hai-zhang, Chen Dian-zhao. On the relation of lamp rophyre to gold ore in the Jiaodong area [J]. Geology and Exploration, 1992, 28 (2): 15 - 18.

- [19] 易建斌,付守会,单业华.湖南锡矿山超大型锑矿床煌斑岩脉地质 地球化学特征[J].大地构造与成矿学,2001,29(9):290-295.
 Yi Jian-bin, Fu Shou-hui, Shan Ye-hua Research on the geochemical characteristics of the lamprophyre in the Xikuangshan superlarge stibnite oredeposit, Hunan, China[J]. Geotectonic etMetallogenia, 2001, 29(9):290-295.
- [20] Treuil M, Joron J M. Utilisation des elements hygromagmatophiles pour la simplification de la modelisation quantitative des processus magmatique [J]. Soc. It M ineral Petrol, 1975, 31: 125 - 126.
- [21] 王学成,饶 冰. 粤北贵东岩体内基性岩脉的成因研究 [J].
 南京大学学报, 1989, 25 (2): 120 131.
 Wang Xue-cheng, Rao Bing Petrogenetic investigation of basite in the Guidong rock mass in the north of Guangdong [J]. Journal of Nanjing University, 1989, 25 (2): 120 - 131.
- [22] 邱家骧.五大连池 科洛 二克山富钾火山岩 [M]. 武汉:中国地质大学出版社, 1991: 135 150.
 Qiu Jia-xiang The rich-potassic volcanics in Five big pools-Keluo-Erke Mountain [M]. Wuhan: China University of Geosciences Press, 1991: 135 150.
- [23] Hide D. The evolution of Western Pacific plate and its margin[J]. Tectonophysics, 1977, 38: 115 165.
- [24] Charvet J, Lapierre H, Yu Y W. Geodynamic significance of the Mesozoic volcanism of southeastem China [J]. Journal of Southeast A sian Earth Sciences, 1994, 9: 387 - 396.
- [25] Lapierre H, Jahn B M, Charvet J, et al Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China [J]. Tectonophysics, 1997, 274: 321 - 338.
- [26] 赵振华,包志伟,张伯友.湘南中生代玄武岩类地球化学特征
 [J].中国科学(增刊), 1998:7 14.
 Zhao Zhen-hua, Bao Zhi-wei, Zhang Bo-you Geochemical characteristics of Mesozoic basalts in Southern Hunan [J]. Science in China (Sup.), 1998:7 - 14.

Geochem istry and Origin of Lamprophyre in the Northeast of Guangxi

LU Kun¹, FENG Zuo - ha², HOU Du - jie¹, LIXiao - Feng³

(1. China University of Geosciences, Beijing 100083;

2 Department of Resource and Environmental Engineering, Guilin University of Technology, Guilin 541004;

3 Institute of M ineral Resources, Chinese Acadeny of Geological Sciences, Beijing 100037)

Abstract: The content of silicon dioxide in the lamp rophyres in northeast Guangxi changes from 33.74% to 48.14%, which can be classified as basic to ultra - basic, potassic to ultra - potassic lamp rophyre of the calc - alkaline rock series The geochemical study demonstrates that the lamp rophyre dykes are characterized by significant L LE and LREE enrichment but a depletion in HFS elements (Ta - Nb - Ti), there is moderate to strong fractionation between the light and heavy REE. The study of element geochemistry and geological history shows that the lamp rophyre formed from the magma derived from partial melting of the mantle with metasomatism of fluids rich in REE in subduction zone, and with contamination of crustal materials in rising process of the magma

Key words: lamp rophyres, geochem istry, partial melting, crustal contamination, northeast Guangxi