小秦岭文峪一东闯金矿床流体 包裹体的微量元素及成因意义

徐九华1,谢玉玲1,刘建明2,朱和平2

(1. 北京科技大学资源工程系,北京 100083;2. 中国科学院地质与地球物理研究所,北京 100029)

[摘 要]运用热爆法提取和ICP-MS技术,研究了小秦岭文峪—东闾金矿不同阶段脉石英流体包 裹体的稀土和微量元素。数据表明,石英流体包裹体的 LREE 相对富集, SLREE/SHREE 为 3.19~ 8.45,且从早阶段至晚阶段该比值有增长之势。轻重稀土分馏程度不大,存在着一定的 Eu 异常。流体 中 Cu、Zn、Mo、W、Pb等微量成矿元素的富集系数远大于1。结合太华群变质岩系、文峪花岗岩体的 REE 和 Cu、Pb、Zn 等微量元素特征,认为金矿床的成矿物质主要来自太华群变质岩系。

[关键词]稀土元素 微量元素 流体包裹体 ICP-MS 小秦岭金矿

[中图分类号]P618.51 [文献标识码]A [文章编号]0495-5331(2004)04-0001-06

位于豫陕边界的小秦岭金矿田是我国著名的金 成矿区带。矿田处于太古宙绿岩带内,南北分别以 小河断裂和太要断裂为界,东西延伸达140km。长 期以来关于该区金矿床的成因一直是争论的焦点, 早期学者将矿床归属为变质热液型^[1],也有人认为 属沉积变质 - 岩浆热液叠加改造型^[2]或岩浆期后 热液型^[3,4]。Xu等^[5]、Jiang等^[6]认为成矿流体源于 上地幔和/或下地壳的重熔(燕山晚期文峪花岗岩) 并受到大气降水的混合,而成矿物质则来自太华群。 范宏瑞等^[7]近来提出变质热液叠加岩浆热液的成 因观点。本文通过文峪—东闯金矿床脉石英的流体 包裹体微量元素特征研究来探讨成矿流体的来源。

1 研究样品和测定方法

研究样品采自小秦岭文峪一东闯金矿。该矿床 位于小秦岭中段晚燕山期文峪花岗岩体之南的新太 古界太华群地层中(图1)。主要的含金石英脉受近 东西向韧性剪切带控制,赋矿围岩为太华群闾家峪 组斜长角闪岩、黑云斜长片麻岩及各种类型的混合 岩。成矿阶段分为黄铁矿 - 石英阶段(I)、石英 -黄铁矿阶段(II)、含铁碳酸盐 - 多金属硫化物阶段 (III)和石英 - 方解石阶段(IV)^[8],其中 II、III 阶段 为金的主要矿化阶段。镜下观测表明各阶段的脉石 英中都含有丰富的原生流体包裹体,主要类型为富 CO₂ 的低盐度水溶液包裹体,偶见含子矿物的 H₂O - NaCl - CO₂ 体系多相包裹体。I ~ IV 阶段原生包 裹体的均一温度分别为 220℃ ~ 360℃、200℃ ~ 280℃、180℃ ~ 280℃和 180℃ ~ 240℃^[9],与其他研 究者报道的基本一致^[7]。

选择了代表性的石英样品,应用热爆提取技术 和电感耦合等离子质谱(ICP-MS)方法对包裹体中 的微量元素(包括稀土元素)组成进行了测定。送 测石英样品+60~-40目,样重5g左右,样品纯度 >99%。样品的预处理方法为:在100℃爆裂释放 一次以消除次生包裹体的影响,尔后在400℃爆裂 15 分钟,冷却后加 3ml 的 5% HNO, 溶液,超声震荡 15 分钟,离心,溶液装入处理干净的小塑料瓶以备 测定微量元素用。采用 ICP – MS 的方法^[10],对石 英流体包裹体中的稀土元素进行了测试。测试在核 工业地质测试研究中心进行,实验仪器为 Finnigan MAT 生产的 ELEMENT 型等离子质谱仪,分辨率 300, RF 功率 1.25kW。其他实验条件为:样品气流 速 1.04L/min,辅助气流速 0.96L/min,冷却气流速 14.0L/min,分析室真空 6×10⁻⁶Pa。包裹体中气相 成分分析在中科院地质与地球物理研究所进行,实 验仪器为 RG202 四极质谱仪^[11]。为了探讨成矿流 体稀十元素的演化,对文峪花岗岩和太华群变质岩 也进行了全岩稀土元素的补充分析。

[[]收稿日期]2003-06-23;[修订日期]2003-08-05;[责任编辑]曲丽莉。

[[]基金项目]中国科学院知识创新工程项目(编号:KZCX1-07)和教育部博士点基金(编号:20030008018)资助。

[[]第一作者简介]徐九华(1951年-),男,1998年毕业于中国地质大学,获博士学位,教授,现主要从事矿床学研究和教学工作。

图 1 小秦岭金矿带区域地质略图[据林宝钦等(1989)和黎世美等(1996)综合修绘] Q-第四系; N-第三系;1-中元古界;2-新太古界太华群;3-晚燕山期文峪花岗岩;4-熊耳期花岗岩; 5-中岳期花岗岩;6-断裂;7-金矿床位置

2 分析结果

2.1 稀土元素特征

由 ICP - MS 测定的脉石英流体包裹体微量元 素组成列于表1。分析稀土元素特征时考虑到样品 中包裹体数量对测试数据的影响,利用四极质谱分 析的水含量求得单位包裹体水的 REE 含量,然后再 用球粒陨石标准化(表1)。表1数据表明脉石英流 体包裹体的轻重稀土分异程度不太大,(La/Yb)_N 为1.97~4.79。LREE 相对富集, Σ LREE/ Σ HREE 为3.19~8.45,且从早阶段至晚阶段该比值有增长 之势。轻稀土分馏程度(La/Sm)_N 一般大于重稀土 的(Gd/Yb)_N。存在着一定的 Eu 异常,早阶段的脉 石英表现为 δ Eu 负异常,为0.64~0.68,而多金属 硫化物阶段的脉石英则表现为 δ Eu 正异常,为1.36 ~6.77。在 REE 配分模式图中,分布曲线呈较弱的 右倾之势(图2)。

2.2 其他微量元素特征

ICP-MS分析结果还给出了流体包裹体的Li、

Ti、V 等 20 余种微量元素含量,引用包裹体水进行 校正,得到金矿床脉石英中包裹体的微量元素含量 (表2)。表中数据说明,相对于上地幔元素丰度或 中国陆壳元素丰度[12],文峪一东闯金矿床成矿流体 中微量元素明显地富集或贫化。富集系数(流体中 含量/上地幔元素丰度或中国陆壳元素丰度)大于1 的元素主要为金属成矿元素,如 Cu、Zn、Mo、W、Pb、 Bi 等(图3)。它们在成矿流体中富集,在矿石沉淀 过程常以金属硫化物形式与金银矿物伴生,如黄铜 矿、闪锌矿、方铅矿等。富集系数小于1的元素有2 类,一类为铁族元素(Ti、V、Cr、Mn、Fe),另一类为稀 有(Nb,Ta),稀+(见前)和放射性元素(Th,U)。显然这些元素在成矿流体中亏损,在金矿床的矿物共 生组合中罕见。Fe虽然在成矿流体中相对较贫,但 由于其绝对含量仍然较高,所以当S逸度高时以黄 铁矿产出,CO2含量高时以菱铁矿或铁白云石产出。

3 讨论

3.1 太华群一文峪岩体一含金石英脉的 REE 演化

前人对太华群斜长角闪岩、片麻岩、混合岩、文 峪花岗岩及含金石英脉进行了 REE 研究^[4,13],结合 我们做的结果得出主要认识如下:

1)太华群斜长角闪岩具有最小的 ΣREE,而片 麻岩、文峪花岗岩则具有较大的 ΣREE。据胡志宏 等^[13]均质混合岩的 ΣREE 可达 1256×10⁻⁶。这与 REE 含量分布从超基性 - 基性岩到酸性岩、碱性岩 逐渐增加的规律是一致的。含金石英脉的 ΣREE 平 均为 78.66×10⁻⁶(表3),总体上小于花岗岩和变质 岩。王祖伟^[14]的资料也表明,从太华群到文峪— 华山花岗岩, ΣREE 增加。太华群变质岩在燕山期 的深部重熔过程中,稀土元素受局部熔融过程不相

表 1 小秦岭文峪—东闯金矿脉石英流体包裹体的稀土元素测定结果(H_2O 和球粒陨石标准化) $\omega_B/10^{-6}$

	-	10 2	DC 17 3			
	DC -	10 - 2	DC - 17 - 2	WY1687 - 9	WY1584 - 4	球粒陨石平均值
样品特征	V507	2110m	V507 1940m	V505 1687m	V505 1584m	(22)
	黄铁矿	石英脉	黄铁矿方铅矿石英脉	多金属硫化物石英脉	* 粗晶方铅矿石英脉	太尔曼,1977
	([<u>)</u>	<u>(II)</u>	(III)	(III)	
La	0	[48	0.920	0.683	0.080	0.32
Се	0.0)93	0. 599	0.763	0.221	0.94
Pr	0.1	125	0.624	0.894	0.046	0.12
Nd	0.1	113	0. 54 6	0.666	0.034	0.60
Sm	0.1	[46	0. 544	0.579	0.024	0.20
Eu	0.0	071	0.262	0.592	0.133	0.073
Gd	0.0)74	0.225	0.294	0.015	0.31
Ть	0.0)64	0.217	0. 191	0.029	0.05
Dy	0	100	0.312	0.278	0.044	0.21
Ho	0.0	051	0.146	0. 191	0.021	0.073
Er	0.0)51	0.154	0. 196	0.034	0.21
Tm	0.0)55	0. 161	0. 197	0.036	0.033
Yb	0.0	075	0. 192	0.231	0.033	0.19
Lu	0.0)50	0.207	0.219	0.028	0.031
H ₂ O	246.	397	174 601	42 020	567 794	0.051
z- 奋体的 SRFF	0.0	129	0.0335	42.020	0.0140	
RFF/HRFF	3	127	5 95	5 00	0.0149	
(La/Yb).	J. I	07	J. 0J	3.90	8,45	
(La/Sm)	1.	97	4.79	2.96	2.39	
$(La SIII)_{N}$	1.	01	1.69	1.18	3, 31	
	0.	99	1.17	1.27	0.45	
δĽu	0.	64	0.68	1.36	6.77	· ·
	LICE MALL	MILLS IN				
主:稀土元素)	为 ICP - MS 方法	测试,水为四	极质谱法测。由中国	科字院地质与地球物:	理研究所乐和平等测。	
主:稀土元素)	ち ICP - MS 方法 表 2 /	测试, 水为四 小秦岭文峪~	™质谱法测。由甲国 ─ 东闯金矿脉石英 泛	科学院地质与地球物: 流体包裹体的微量 元	理研究所朱和平等测。 注素(除 REE 外)含量	ω _в /10 ⁻
主: 稀土元素) 	h ICP - MS 方法 表 2 /	测试,水为四 小秦岭文峪~	₩ 版 面 密 面 密 面 中 面 ★ ★ 本 வ 金 矿 脉 石 英 近	科学院跑质与地球物: 流体包裹体的微量 元	理研究所朱和平等测。 :素(除 REE 外)含量 国陆壳元素主度	ω _B /10 ⁻ 十地 時 丰度
E:稀土元素) ————————————————————————————————————	h ICP - MS 方法 表 2 / DC - 10 - 2	测试,水为四 小秦岭文峪~ DC − 17 − 2	₩ 质谱宏测。由中国 → 东闯金矿脉石英 WY1687 - 9	科字院地质与地球物: 流体包裹体的微量 元 WYI584 - 4	理研究所朱和平等测。 素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988)	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎彤,1976)
E:稀土元素) 样号 	为 ICP - MS 方法 表 2 / DC - 10 - 2 55. 32	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95	被质谱法测。由中国 东闯金矿脉石英 泛 WY1687 - 9 18.54	科字院地质与地球物: 充体包裹体的微量元 WYI584 - 4 34.30	理研究所朱和平等测。 主素(除 REE 外)含量 国陆売元素丰度 (黎形,1988) 44	ω _B /10 ⁻ 上地幔丰度 (黎彤,1976) 4.1
E:稀土元素) 样号 Li Ti	为 ICP - MS 方法 表 2 / DC - 10 - 2 55. 32 52. 49	测试,水为四 小秦岭文峪 DC - 17 - 2 40.95 36.39	被质谱法测。由中国 东闯金矿脉石英2 WY1687-9 18.54 50.87	科学院地质与地球物: 	理研究所采和平等测。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500
主:稀土元素	ち ICP - MS 方法 表 2 / DC - 10 - 2 55.32 52.49 0.22	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96	被质谱法测。由中国 东闻金矿脉石英活 WY1687-9 18.54 50.87 4.87	科学院地质与地球物: 流体包裏体的微量 元 WY1584 - 4 34.30 7.70 0.23	理研究所朱和平等测。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80
主:稀土元素	b ICP - MS 方法 表 2 / DC - 10 - 2 55. 32 52. 49 0. 22 5. 06	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89	磁质谱法测。田中国 → 东闯金矿脉石英 WY1687 – 9 18.54 50.87 4.87 7.81	科学院地质与地球物: 統体包裏体的微量 元 WYI584 - 4 34.30 7.70 0.23 1.84	理研究所朱和平等测。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600
主:稀土元素	ち ICP - MS 方法 表 2 / DC - I0 - 2 55.32 52.49 0.22 5.06 I43.38	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54	被质谱法测。田中国 东闯金矿脉石英 WY1687 - 9 18.54 50.87 4.87 7.81 104.0	科学院地质与地球物: 統体包裏体的微量 元 WYI584 - 4 34.30 7.70 0.23 1.84 33.88	理研究所朱和平等测。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600
主:稀土元素 样号 Li Ti V Cr Mn Fe	ち ICP - MS 方法 表 2 / DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558	磁质谱法测。田中国 → 东闯金矿脉石英 WY1687 - 9 18.54 50.87 4.87 7.81 104.0 63295	科学院地质与地球物: 森体包裏体的微量 元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0	理研究所朱和平等测。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 95000
主:稀土元素 样号 Li Ti V Cr Mn Fe Co	b ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18	一东闯金矿脉石英₂ →东闯金矿脉石英₂ WY1687 - 9 18.54 50.87 4.87 7.81 104.0 63295 43.48	科学院地质与地球物: 森体包裏体的微量 元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658	理研究所朱和平等测。 注案(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 160
E:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu	b ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 I43. 38 41085 25. 06 I4168	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694	磁质谱法测。田中国 东闻金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971	科学院地质与地球物: 森体包裏体的微量 元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1	理研究所朱和平等测。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 95000 160 40
E:稱土元素) 样号 Li Ti V Cr Mn Fe Co Cu Zn	ち ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401	测试,水为四 小秦岭文峪→ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07	被质谱法例。田中国 东闻金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551 2	科学院地质与地球物: 森体包裏体的微量 元 WYI584 - 4 34.30 7.70 0.23 I.84 33.88 663.0 0.0658 I20.1 53.52	理研究所朱和平等测。 注案(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 95000 160 40 60
E:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr	ち ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244 I	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2	磁质谱法例。田中国 东闻金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9	科学院地质与地球物: 森体包裏体的微量 元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2	理研究所朱和平等测。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 95000 160 40 60
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y	b ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0 320	磁质谱法测。田中国 东闻金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.260	科学院地质与地球物: 森体包裏体的微量 元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542	理研究所朱和平等测。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 1600 160 40 60 120
E:稀土元素) 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr	大 ICP - MS 方法 表 2 / DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.122	磁质谱法例。田中国 东闯金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.60	科学院地质与地球物: 森体包裏体的微量 元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.028	理研究所朱和平等例。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 1600 160 40 60 120 5
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nh	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0072	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0000	磁质谱法例。田中国 东闯金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.60 0.60	中学院地质与地球物: 赤体包裏体的微量 元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.028 0.028	理研究所朱和平等例。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 21	<i>ω</i> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 1600 95000 160 40 60 120 5 5 50
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb M:	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058	极质谱法例。田中国 东闯金矿脉石英語 WY1687 - 9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.369 0.60 0.147	中学院地质与地球物: 赤体包裏体的微量 元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.028 0.0068 0.0068	理研究所朱和平等例。 注案(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34	<u>ω_B/10 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 1600 160 40 60 120 5 5 50 6</u>
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Ph	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64	测试,水为四 小秦岭文峪一 DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 0.2 	极质谱法例。田中国 东闯金矿脉石英語 WY1687 - 9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.369 0.60 0.147 1.10	中学院地质与地球物: 赤体包裏体的微量 元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.028 0.0068 0.47	理研究所朱和平等例。 注案(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2	<u>ω</u> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 1600 160 40 60 120 5 50 6 0.6
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97	测试,水为四 小秦岭文峪一 DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7	极质谱法例。田中国 - 东闯金矿脉石英 [WY1687 - 9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.369 0.60 0.147 1.10 341.4	中学院地质与地球物: 赤体包裏体的微量元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.028 0.0068 0.47 91.66	理研究所朱和平等例。 注案(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001*	<u>ω</u> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 1600 95000 160 40 60 120 5 50 6 0.6 0.02
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh Cs	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97 29. 75	测试,水为四 小秦岭文峪一 DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7 35.59	极质谱法例。田中国 东闻金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.369 0.60 0.147 1.10 1341.4 32.27	中学院地质与地球物: 流体包裏体的微量 元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.0542 0.028 0.0068 0.47 91.66 27.42	理研究所朱和平等例。 注案(除 REE 外)含量 国陆壳元素丰度 (黎彤,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001* 1.4*	<u>ω</u> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 95000 160 95000 160 40 60 120 5 5 50 6 0.6 0.6 0.02 0.3
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh Cs Ba	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97 29. 75 53. 31	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7 35.59 47.13	磁质谱法例。田中国 东闻金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.369 0.369 0.60 0.147 1.10 1341.4 32.27 89.46	中学院地质与地球物: 赤体包裏体的微量元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.028 0.0068 0.47 91.66 27.42 113.67	理研究所朱和平等例。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001* 1.4* 610	<u>ω</u> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 95000 160 40 60 120 5 5 50 6 0.6 0.02 0.3 76
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh Cs Ba W	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97 29. 75 53. 31 13. 34	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7 35.59 47.13 4.41	极质谱法例。田中国 -东闻金矿脉石英語 东闻金矿脉石英語 	中学院地质与地球物: 赤体包裏体的微量元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.028 0.0068 0.47 91.66 27.42 113.67 2.05	理研究所采和平等例。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001 * 1.4* 610 2.4	<u>ω</u> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 95000 160 40 60 120 5 5 50 6 0.6 0.02 0.3 76 0.3
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh Cs Ba W Pb	大 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97 29. 75 53. 31 13. 34 3189	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7 35.59 47.13 4.41 560.5	极质谱法例。田中国 - 东 闻 金 矿 脉 石 英 記 - 东 闻 金 矿 脉 石 英 記 - 东 闻 金 矿 脉 石 英 記 - 东 闻 金 矿 脉 石 英 記 - 东 闻 金 矿 脉 石 英 記 - 东 闻 金 矿 脉 石 英 記 - 京 四 町 104.0 - 63295 - 43.48 - 26971 - 551.2 - 306.9 - 0.369 - 0.	中学院地质与地球物: 赤体包裏体的微量元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.028 0.0068 0.47 91.66 27.42 113.67 2.05 94.1	理研究所朱和平等例。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001* 1.4* 610 2.4 15	<u>ω</u> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 1600 160 40 60 120 5 5 50 6 0.6 0.02 0.3 76 0.3 2.1
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh Cs Ba W Pb Bi	大 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97 29. 75 53. 31 13. 34 3189 1. 614	测试,水为四 小秦岭文峪~ DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7 35.59 47.13 4.41 560.5 1.178	极质谱法例。田中国 - 东闯金矿脉石英 [- 东闯金矿脉石英] - -	中学院地质与地球物: 赤体包裏体的微量元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.0542 0.028 0.0068 0.47 91.66 27.42 113.67 2.05 94.1 0.140	理研究所朱和平等例。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001* 1.4* 610 2.4 15 0.0043*	<u>ω</u> _B /10 ⁻ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 95000 160 40 60 120 5 5 50 6 0.6 0.02 0.3 76 0.3 2.1 0.0025
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh Cs Ba W Pb Bi Th	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97 29. 75 53. 31 13. 34 3189 1. 614 0. 073	测试,水为四 小秦岭文峪一 DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7 35.59 47.13 4.41 560.5 1.178 0.056	极质谱法例。田中国 东闯金矿脉石英語 WY1687 - 9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.511 1.10 1341.4 32.27 89.46 5.11 1.115.3 2.66 0.045	中学院地质与地球物: 赤体包裏体的微量元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.0542 0.028 0.0068 0.47 91.66 27.42 113.67 2.05 94.1 0.140 0.038	理研究所朱和平等例。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001* 1.4* 610 2.4 15 0.0043* 17	
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh Cs Ba W Pb Bi Th U	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97 29. 75 53. 31 13. 34 3189 1. 614 0. 073 0. 0301	测试,水为四 小秦岭文峪一 DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7 35.59 47.13 4.41 560.5 1.178 0.056 0.065	极质谱法例。田中国 东闯金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.511 1.10 1341.4 32.27 89.46 5.11 1115.3 2.66 0.045 0.088	中学院地质与地球物: 赤体包裏体的微量元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.0542 0.028 0.0068 0.47 91.66 27.42 113.67 2.05 94.1 0.140 0.038 0.011	理研究所朱和平等例。 注案(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001* 1.4* 610 2.4 15 0.0043* 17 5.6	
E:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh Cs Ba W Pb Bi Th U Mo/W	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97 29. 75 53. 31 13. 34 3189 1. 614 0. 073 0. 0301 1. 323	测试,水为四 小秦岭文峪一 DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7 35.59 47.13 4.41 560.5 1.178 0.056 0.065 1.788	极质谱法例。田中国 东闯金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.47 1.10 1341.4 32.27 89.46 5.11 1115.3 2.66 0.045 0.088 0.215	中学院地质与地球物: 赤体包裏体的微量元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.0542 0.028 0.0068 0.47 91.66 27.42 113.67 2.05 94.1 0.140 0.038 0.011 0.229	理研究所朱和平等例。 注案(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001* 1.4* 610 2.4 15 0.0043* 17 5.6	$ $
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh Cs Ba W Pb Bi Th U Mo/W Cu/Zn	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97 29. 75 53. 31 13. 34 3189 1. 614 0. 073 0. 0301 1. 323 35. 269	测试,水为四 小秦岭文峪一 DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7 35.59 47.13 4.41 560.5 1.178 0.056 0.065 1.788 41.944	极质谱法例。田中国 东闯金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.47 1.10 1341.4 32.27 89.46 5.11 1115.3 2.66 0.045 0.088 0.215 48.931	中学院地质与地球物: 赤体包裏体的微量元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.0542 0.028 0.0068 0.47 91.66 27.42 113.67 2.05 94.1 0.140 0.038 0.011 0.229 2.243	理研究所朱和平等例。 注案(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001* 1.4* 610 2.4 15 0.0043* 17 5.6	
生:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh Cs Ba W Pb Bi Th U Mo/W Cu/Zn Pb/Zn	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97 29. 75 53. 31 13. 34 3189 1. 614 0. 073 0. 0301 1. 323 35. 269 7. 938	测试,水为四 小秦岭文峪一 DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7 35.59 47.13 4.41 560.5 1.178 0.056 0.065 1.788 41.944 6.364	一东闻金矿脉石英語 WY1687-9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.329 0.369 0.369 0.369 0.369 0.329 0.369 0.369 0.329 0.369 0.329 0.369 0.329 0.369 0.329 0.327 89.46 5.11 1115.3 2.66 0.045 0.0215 48.93 2.66 0.0215 48.93 2.66 0.0215 48.93 2.66 0.0215 48.931 2.023	中学院地质与地球物: 赤体包裏体的微量元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.0542 0.028 0.0068 0.47 91.66 27.42 113.67 2.05 94.1 0.140 0.038 0.011 0.229 2.243 1.759	理研究所朱和平等例。 注案(除 REE 外)含量 国陆壳元素丰度 (黎彤,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001* 1.4* 610 2.4 15 0.0043* 17 5.6	$\omega_{B}/10^{-1}$ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 95000 160 40 60 120 5 50 6 0.6 0.02 0.3 76 0.3 2.1 0.0025 0.75 0.13
主:稀土元素 样号 Li Ti V Cr Mn Fe Co Cu Zn Sr Y Zr Nb Mo Rh Cs Ba W Pb Bi Th U Mo/W Cu/Zn Pb/Zn Pb/Cu	表 ICP - MS 方法 表 2 // DC - 10 - 2 55. 32 52. 49 0. 22 5. 06 143. 38 41085 25. 06 14168 401 244. 1 0. 130 0. 104 0. 0078 17. 64 216. 97 29. 75 53. 31 13. 34 3189 1. 614 0. 073 0. 0301 1. 323 35. 269 7. 938 0. 225	测试,水为四 小秦岭文峪一 DC - 17 - 2 40.95 36.39 0.96 20.89 164.54 16558 8.18 3694 88.07 190.2 0.320 0.132 0.0058 7.87 295.7 35.59 47.13 4.41 560.5 1.178 0.056 0.065 1.788 41.944 6.364 0.152	· 按 质谱法测。田中国 - 东 冯 金 矿 脉 石 英 拉 WY1687 - 9 18.54 50.87 4.87 7.81 104.0 63295 43.48 26971 551.2 306.9 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.369 0.41 1115.3 2.66 0.045 0.088 0.215 48.931 2.023 0.041	中学院地质与地球物: 赤体包裏体的微量元 WY1584 - 4 34.30 7.70 0.23 1.84 33.88 663.0 0.0658 120.1 53.52 232.2 0.0542 0.0542 0.028 0.0068 0.47 91.66 27.42 113.67 2.05 94.1 0.140 0.038 0.011 0.229 2.243 1.759 0.784	理研究所朱和平等例。 注素(除 REE 外)含量 国陆壳元素丰度 (黎形,1988) 44 6600 99 63 780 50800 32 38 86 690 27 160 34 2 0.001* 1.4* 610 2.4 15 0.0043* 17 5.6	$\omega_{B}/10^{-1}$ 上地幔丰度 (黎形,1976) 4.1 2500 80 1600 1600 1600 160 40 60 120 5 50 6 0.6 0.02 0.3 76 0.3 2.1 0.0025 0.75 0.13

注:测试方法同表 1;带"*"者为全球陆壳元素丰度。

 $\omega_{\rm B}/10^{-6}$

9

表う	小秦殿又齡化冈] 右和太平群变质石	的稀工兀寡珇风

	1	2	3	4	5	6	7	8	9
元素	₩G-1 文峪花岗 岩(粗粒)	₩G-2 文峪花岗 岩(细粒)	¥0352 太华群斜 长角闪岩	¥0535 太华群斜 长片 麻 岩	文峪花岗 岩(13)	含金石英 脉(10)	太华群斜 长角闪岩 (11)	太华群斜 长片麻岩 (9)	浅粒岩变 粒岩(4)
La	49.93	194.69	6.5	51.63	40.77	21.4	14.7	31.7	34.4
Ce	78.38	365.67	15.29	96.79	79.25	30.8	30.9	59.7	64.4
Pr	8.25	36.76	1.94	10.49	9.98	3.9	3.8	7	6.37
Nd	30.27	125.67	10.03	37.77	25.34	13	13.4	25.4	25.6
Sm	4.89	18.42	3.03	6.24	4.98	2.6	3.8	4.7	3.8
Eu	0.96	1.45	1.04	0.89	1.23	0.67	1.22	1.14	0.78
Gd	3.68	12.44	5.04	5.24	3.94	1.98	4.16	4. 19	2.78
Ть	0.4	1.41	0.69	0.76	0.4	0.27	0.7	0, 66	0.38
Dy	2.66	8.18	4.26	3.7	2.24	1.69	4.09	2.83	2.06
Ho	0.56	1.68	1.02	0.7	0.68	0.36	0.98	0.62	0.43
Er	1.58	4.05	2.39	1.86	1.13	0.95	2.6	1, 66	1.13
Tm	0.24	0.49	0.34	0.25	0.17	0.15	0.37	0.28	0.17
ҮЬ	1.66	2.97	2.16	1.4	1.25	0.73	2.63	1. 66	1.26
Lu	0.26	0.51	0.28	0.25	0.17	0.16	0.37	0.21	0.14
ΣREE	183.72	774.39	54.01	217.97	171.53	78.66	83.72	141.75	143.70
LREE/HREE	15.64	23.41	2.34	14.39	16.19	11.51	4.27	10.71	16.21
(La/Yb) _N	17.86	38.92	1. 79	21.90	19.37	17.41	3.32	11.34	16.21
(La/Sm) _N	6.38	6.61	1.34	5.17	5.12	5.14	2.42	4.22	5.66
(Gd/Yb) _N	1.36	2.57	1.43	2.29	1.93	1. 66	0.97	1.55	1.35
δEu	0.72	0.30	0.91	0.51	0.90	0.95	1.03	0.84	0.76

注: 序号1~4 地质科学院岩矿测试所测定; 序号5~9 据黎世美等(1996), 括弧内数据为样品数。

容元素在熔体/岩石间分配系数的影响,在花岗岩浆 中富集。重熔之初,稀土元素在熔体中含量与残余 变质岩中含量之比值 C_L/C₀ 最大。随着重熔比例增 加、大规模岩浆的形成,C_L/C₀逐渐减小,此时形成 的 H₂O - CO₂ 流体由于不混溶而不参与岩浆的成 分,它们沿着韧性剪切带上升形成含金石英脉,具有 比花岗岩浆小的 ΣREE 。石英中流体包裹体的 ΣREE 数值上小于石英脉的,可能与包裹体没有充 分爆裂有关。范建国等^[15]的结果也与此相似。

2) 从轻重稀土元素分异程度来看, 文峪岩体 的 Σ LREE/ Σ HREE 最大,黎世美等^[4] 的数据为 16. 19, 王祖伟的为 17. 39^[13], 我们的为 15. 64~23. 4。 因此,在稀土元素配分模式图中含量曲线明显右倾 (图4)。文峪岩体稀土元素的(La/Yb)_N大于10, 反映了同熔型花岗岩的特点,成岩物质来源于下地 壳和上地幔。太华群的 ΣLREE/ΣHREE 较小,其中

斜长角闪岩的为 4. 27(黎世美等)、7.66(王祖伟) 和 2.34(本文),斜长片麻岩的为 10.7(黎世美等) 和 14.39(本文)。含金石英脉的 ΣLREE/ΣHREE 为 11.51,石英包裹体的为 3.19~8.45(平均 5.84),明显地小于文峪花岗岩的,而略大于太华群 变质岩的。这也可用太华群深熔作用来解释,由轻 重稀土在熔体/岩石间的分配系数看,LREE 比 HREE 更易于富集在岩浆中,随着局部熔融程度增 加, Σ LREE/ Σ HREE 增大,从而使花岗岩浆具有最 大的 Σ LREE/ Σ HREE,而残留的太华群仍具有较低 的 Σ LREE/ Σ HREE。重熔晚期产生的 $H_2O - CO_2$ 流 体及其形成的含金石英脉具有略高的 Σ LREE/ Σ HREE。由于 Σ LREE/ Σ HREE 是比值关系,所以石 英中包裹体的爆裂多少对该参数没有影响。总之, Σ LREE/ Σ HREE 反映了成矿物质与太华群有着更 密切的成因联系。

3.2 成矿流体中重金属元素的来源

与 Au 密切共生的重金属元素,如 Cu、Zn、Pb 等 在包裹体溶液中具较大的富集系数。这是太华群深 熔过程中,Cu、Zn、Pb 等相容元素受分配系数的控制 在流体中逐渐富集的结果。太华群斜长角闪岩(34 件样)^[4]的 Cu、Zn、Pb、Mo 含量分别为 31.8×10⁻⁶、 119.2×10⁻⁶、9.64×10⁻⁶、0.68×10⁻⁶,斜长片麻岩 (14 件样)的分别为 8.85×10⁻⁶、71.7×10⁻⁶、12.0 ×10⁻⁶、1.1×10⁻⁶,而文峪花岗岩的分别为 7.95× 10⁻⁶、55.2×10⁻⁶、16.5×10⁻⁶、0.38×10⁻⁶。除 Pb 以外,其他元素在花岗岩中都减少了。在太华群大 规模的深熔过程中,这些微量元素并没有富集到岩 浆中去,而是随着 CO₂ – H₂O 流体的产生富集到含 矿流体中,这就是金矿床流体包裹体中微量元素高 度富集的可能原因之一。因此,成矿流体中重金属 元素来自太华群变质岩系,而不是文峪花岗岩。

3.3 小秦岭金矿成因

小秦岭金矿的成矿时代是矿床成因的关键问题 之一。早期较有说服力的观点是矿床形成于燕山晚 期,其依据是含金石英脉穿切广布的辉绿(玢)岩脉 (148Ma~182Ma)、文峪花岗岩(108Ma),而被煌斑 岩(76Ma)穿插^[2,3]。李华芹等^[16]的脉石英包裹体 Rb - Sr 等时线年龄(161Ma),王义天等^[17]的蚀变岩 ⁴⁰Ar - ³⁹Ar 年龄(126Ma~128Ma)都对燕山期成矿 说有利,但这些成矿年龄都大于文峪岩体成岩年 龄。卢欣祥等^[18]认为印支期是小秦岭 - 熊耳山地 区重要的金成矿期。薛良伟等^[19]的矿脉包裹体 Rb - Sr、⁴⁰ Ar - ³⁹ Ar 年龄(2005 Ma ~ 2382 Ma) 使得矿床 成因问题更为复杂。从本次微量元素和稀土元素测 定结果,并结合其他地质地球化学资料来看,不能简 单地认为成矿物质来源于文峪花岗岩。Colvine^[20] 曾指出,脉金矿床的成矿流体在 5km 深处参与了金 的成矿作用,流体的岩浆论或变质论只是语义学问 题。在小秦岭金矿糜棱岩带缓慢的形成过程中,深 部流体(在中生代碰撞造山作用期间)源源不断地 向含矿糜棱岩带汇集。据稳定同位素资料,大气水 环流在成矿后期也起了重要作用。总之,小秦岭地 区金矿的成矿流体大部分不是晚燕山期花岗岩侵位 后衍生的,而与花岗岩的起源相似,是太华群深熔作 用的同源产物(不混溶产物)。它们在燕山期构造 热事件中沿着各自通道上升侵位,分别成矿和成岩。 [参考文献]

- [1] 林宝钦,陶铁镛,李广远,等. 豫陕小秦岭地区太古宙主要含金 地层地质特征研究[A].中国金矿主要类型区域成矿条件文 集(3)[C],北京:地质出版社,1989,1~40.
- [2] 王定国,张宏儒,华西霞,等.河南小秦岭金矿主要控矿条件及盲矿预测[A].中国金矿主要类型区域成矿条件文集(3)
 [C].北京:地质出版社,1989.47~83.
- [3] 晁 援,卫旭晨.陕西小秦岭金矿控矿条件及脉体评价标志

[A]. 中国金矿主要类型区域成矿条件文集(3)[C]. 北京:地质出版社, 1989, 87~140.

- [4] 黎世美,瞿伦全,苏振邦,等.小秦岭金矿地质和成矿预测[M].北京:地质出版社,1996.
- [5] Xu Jiuhua, Xie Yuling, Jiang Neng, et al. Mineralogical, fluid inclusion, and stable isotope study of Wenyu - Dongchuang gold deposits in the Xiaoqinling Mt. Area, west Henan, China [J]. Explor. Minning Geol. 1998, 7(4): 321 ~ 332.
- [6] Jiang Neng, Xu Jiuhua, Song Mianxin, Fluid inclusion characteristics of mesothermal gold deposits in the Xiaoqinling district, Shaanxi and Henan provinces, People's Republic of China [J]. Mineralium Deposita, 1999, 34: 150 ~ 162.
- [7] 范宏瑞,谢亦汉,赵 瑞,等.小秦岭含金石英脉复式成因的 流体包裹体证据[J].科学通报,2000,45(5):537~542.
- [8] 徐九华,何知礼,申世亮,等.小秦岭文峪一东闯金矿床稳定
 同位素地球化学及矿液矿质来源[J].地质找矿论丛,1993, 8(2):87~100.
- [9] 徐九华,谢玉玲,申世亮,等.小秦岭与胶东金矿床的成矿流 体特征对比[J].矿床地质,1997,16(2):151~162.
- [10] 苏文超,漆 亮,胡瑞忠,等. 流体包裹体中稀土元素的 ICP MS 分析研究[J]. 科学通报. 1998. 43(10): 1094~1098.
- [11] 朱和平,王莉娟.四极质谱测定包裹体中的气相成分[J].中 国科学(D辑),2001,31(7):586~590.

- [12] 黎 形,倪守斌,地球和地壳的化学元素丰度[M],北京:地质 出版社,1990.
- [13] 胡志宏,周顺之,胡受奚,等.豫西太华群混合岩特征及其与 金矿钼化关系[J].矿床地质,1986,5(4):71~81.
- [14] 王祖伟. 小秦岭金矿带稀土元素地球化学特征初步研究[J]. 矿产与地质, 1996, 10(3): 155~158.
- [15] 范建国,倪 培,苏文超,等. 辽宁四道沟热液金矿床中石英的稀土元素的特征及意义[J],岩石学报,2000,16(4):587~590.
- [16] 李华芹,刘家齐,魏 林. 热液矿床流体包裹体年代学研究及 其地质应用[M]. 北京: 地质出版社,1993.
- [17] 王义天,毛景文,卢欣祥,等.河南小秦岭金矿区 Q875 脉中 深部矿化蚀变岩的⁴⁰ Ar - ³⁹ Ar 年龄及其意义[J].科学通报, 2002,47(18):1427~1431.
- [18] 卢欣祥, 尉向东, 董 有, 小秦岭-熊耳山地区金矿时代 [J], 黄金地质, 1999, 5(1): 11~15.
- [19] 薛良伟, 庞继成, 王祥国. 等. 小秦岭 303 号石英脉流体包裹体 Rb Sr、⁴⁰ Ar ³⁹ Ar 成矿年龄测定[J]. 地球化学, 1999, 28 (5): 473~478.
- [20] Colvine A C. An empirical model for the formation of Archean gold deposits: Products of final cratonization of the Superior Province, Canada [J]. Econ. Geol., Mono. 1989, .6: 37 ~ 53.

TRACE ELEMENTS IN FLUID INCLUSIONS OF WENYU – DONGCHUANG GOLD DEPOSITS IN THE XIAOQINLING AREA, CHINA

XU Jiu - hua¹, XIE Yu - ling¹, LIU Jian - ming², ZHU He - ping²

(1. Department of Resource Engineering, Beijing University of Science and Technology, Beijing 100083;

2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029)

Abstract: Trace elements and rare earth elements in fluid inclusions in various quartz of Wenyu – Dongchuang gold deposits in the Xiaoqinling area were studied by using heating decrepitation and ICP – MS technique. The data show that fluid inclusions in quartz are rich in LREE, with 3. 19 ~ 8.45 of Σ LREE/ Σ HREE which is increasing from earlier stage to later stage. Fractionation is not clear between heavy and light REE, and abnormity of Eu exists in some samples. Some trace elements in fluid inclusions, such as Cu, Zn, Mo, W and Pb, have enrichment coefficients larger than 1. Based on characteristics of Cu, Pb, Zn, W and REE of metamorphic Taihua group and Wenyu granite, it is believed that ore materials were originated from Taihua group.

Key words: rare earth elements, trace elements, fluid inclusions, ICP - MS, gold deposit, the Xiaoqinling area

"新钻牌"CFG	系列桩机(基础工程)	
· 推广工法、	环保产品	
钻孔直径:300~800 mm		
钻深:12 m、15 m、18 m、21 m、25 m、30 m		
长螺旋钻进成孔、泵压混凝土成桩,既成孔成	戈桩一机一次完成;低噪音、无振动。	
生产厂家: 河北新河钻机厂	联系人:崔文艺(营销经理)	
销售热线: 13903192011	电 话:(0319)4752111(传真)	
地 址:河北省新河城内南大街 124 号	邮编:055650	
E – mail:cuiwy@heinfo.net	http://www.xhzuanji.com	