北祁连山石居里沟富铜矿床成矿特征*

杨合群,李文渊,赵东宏,宋忠宝

(中国地质调查局西安地质矿产研究所,西安 710054)

[摘 要]讨论北祁连山石居里沟富铜矿床成矿特征,通过分析认为:成矿环境为中奥陶世弧后扩张 脊;容矿岩石为蛇绿岩套上部火山岩或火山—沉积岩系;矿体赋存部位受海底裂隙系统的控制;含矿热 液起源于海水与玄武岩在高温下的反应,成矿金属元素主要来自火山岩,矿化剂硫来自二者。

[关键词]北祁连山 石居里沟 弧后扩张脊 铜矿 [中图分类号]P618.41 [文献标识码]A [文章编号]0495 - 5331(2000)06 - 0020 - 04

在北祁连加里东期洋盆开合过程中,相伴发生 大范围海相火山作用和受海底热液循环体系制约的 块状硫化物成矿作用。夏林圻等(1996)在系统地研 究了北祁连造山带造山之前的构造火山岩浆演化历 史和成矿背景条件后提出,海底扩张强烈、蛇绿岩套 发育且具规模的中晚奥陶世弧后盆地型火山岩系应 当做为有希望的找矿方向予以重视。目前,这一科 学预言初步得到验证,甘肃省肃南县石居里沟找到 了与中奥陶世弧后盆地火山岩系有关的具中—大型 远景的富铜块状硫化物矿床。在参加石居里沟铜矿 普查专项工作的基础上,本文概括介绍其成矿特征, 旨在对同行们进一步深入研究起抛砖引玉作用。

1 成矿环境

海底块状硫化物矿床的形成几乎均与拉张环境 有关。目前,已知有利于海底块状硫化物矿床形成 的地质构造环境主要有4种: 大陆边缘裂谷区;

岛弧裂谷区; 大洋扩张脊; 弧后扩张脊。

北祁连山中晚奥陶世弧后盆地火山岩带发育于 岛弧火山岩带之北侧,东起老虎山,西至榆树沟,延 长近 800 km,其中西部于中奥陶世打开,白泉门和 扁都口弧后盆地型火山熔岩的 Sm - Nd 等时线年龄 为(468.87 ±4.63) Ma 和(464.59 ±21.89) Ma,向东打 开时间变晚,延滞至晚奥陶世,老虎山弧后盆地型火 山熔岩的 Sm - Nd 等时线年龄为(453.56 ±4.44) Ma (夏林圻等,1998)。石居里地区正位于弧后扩张速 度较大、拉张最强、蛇绿岩最发育的地段,具有良好 的成矿环境。

2 容矿蛇绿岩

前人已初步建立本区蛇绿岩层序(冯益民等,

1996; 龚全胜,1997; 夏林圻等,1998),本次工作进 行补充,重新编制了区内蛇绿岩综合层序图(图1)。

图 1 石居里沟地区弧后扩张脊型蛇绿岩综合层序图

层序底部的变质橄榄岩单元,主要由蛇纹岩化 方辉橄榄岩组成,沿断裂带侵位,呈岩块形式出现。 该单元岩石代表部分熔融后的地幔岩残余。

层序中下部的堆晶岩单元,由橄榄岩、橄长岩、 橄榄辉长岩、辉长岩及辉长辉绿岩组成,代表扩张脊 下岩浆房中橄榄石—斜长石—单斜辉石结晶演化的 产物。

层序中上部早期喷出岩单元,为大套的基性熔 岩,多具十分发育的枕状构造。熔岩中气孔已为绿 泥石和/或石英充填形成杏仁体,杏仁体含量约1% ~8%,大小一般3mm左右。岩石属于拉斑玄武岩 系列,具有低钾、高钛和平坦型的REE配分模式,其 N(Mg)/N(Mg+Fe²⁺)比值小于0.65,表明它们与分 异的扩张脊有关(夏林圻等,1998)。

层序上部晚期喷出岩单元,除了火山熔岩外,还

[收稿日期]1999-08-02;[修定日期]1999-10-20;[责任编辑]张启芳。

^{*} 有关工作在夏林圻、夏祖春、任有祥等专家指导下进行,参加人员还有黄洪平、李智佩、徐学义等。

有火山碎屑岩。洋壳火山作用以缺乏爆发相喷发为 特征,但本区海相火山岩系中火山碎屑岩有相当比 例,反映弧后火山岩浆比洋脊—洋岛型火山岩浆富 含挥发组分,具有向岛弧火山岩浆过渡的特点,这可 能与消减板片源含水流体的卷入有关,使得其源区 地幔的部分熔融产生于较高的 P_{HO}条件下。

层序上部沉积岩单元,由凝灰质砂岩、板岩夹硅 质岩组成。其中以凝灰质砂岩为主,而该类岩石中 石英碎屑可达 25%~70%。这是弧后扩张脊与大 洋扩张脊蛇绿岩套区别的又一重要特点。大洋扩张 脊蛇绿岩套顶部的沉积岩(物)单元为远洋硅泥质沉 积,常以硅质岩为主。弧后盆地的一侧是隆起的岛 弧,另一侧是露出水面的大陆,这就造成盆地中沉积 物的复杂性,大量的石英碎屑显然不可能来自原地 的扩张脊火山岩。若从本区沉积岩单元中剔除凝灰 质砂板岩,剩余部分正好是典型蛇绿岩套顶部人们 所熟知的硅质岩。

我们对石居里沟矿区进行11万地质草测查明 (李文渊等,1999),以穿过 号沟和 号沟的韧性剪 切带为界,其南侧为早期喷发岩系,即大套的基性熔 岩,其北侧为晚期喷发岩系和沉积岩,即除基性熔岩 外,还有火山碎屑岩和具沉积特征的凝灰岩砂板岩 夹硅质岩。矿区构造方向总体为北西向,沉积层与 基性岩枕倾向北东,倾角 38 °~ 72 °,但 号沟一带构 造走向有明显向北东凸的扭曲,使该地段沉积层北 西倾,倾角 45 °~ 60 °。

石居里 号沟铜矿床在蛇绿岩套中的位置同矿 区外围的九个泉铜矿床类似,产于早期喷出岩系中。 石居里 号沟铜矿床则与晚期喷发岩系关系密切, 产于该岩系及火山碎屑沉积岩系中。

3 矿床地质

3.1 石居里 号沟矿床

号沟铜矿床 (原 45 号矿点)的隐伏工业铜矿 体呈陡立的不规则板状,走向约 30 北东,倾向南东, 倾角 67 ~ 75 °,向北东倾伏,倾伏角约 47 °。工程已 控制的矿体长度约 60 m,在 3593.56 m 中段见矿体 北东端被断层破碎带截断,另一侧矿体有待探明。 矿体厚度 12 m~31 m,平均 24 m; 矿体延深已超过 90m 仍未尖灭。矿体围岩为碧玉岩和次生石英岩。 这些岩石外侧为凝灰质砂岩及基性火山熔岩。

矿石矿物以黄铁矿、黄铜矿为主,少量闪锌矿; 脉石矿物主要为石英,次为绿泥石、黝(绿)帘石、方 解石、偶见钠长石。黄铁矿多呈自形—它形粒状。 黄铜矿、闪锌矿多呈它形填隙于黄铁矿粒间,也有的 呈它形粒状分布于石英集合体中,还有少量黄铜矿 呈乳浊状分布于闪锌矿中。

矿石类型按构造特征划分为块状 —角砾状和网 脉状 —浸染状两大类。矿体主要由块状 —角砾状矿 石组成,厚 11 m~22 m,平均 16 m,由上向下有变厚 趋势,矿石中的岩石角砾主要为蚀变基性火山岩,靠 近矿体边部见有碧玉岩团块。矿体南东侧局部分布 碧玉岩型网脉状矿石或者碧玉岩。矿体北西侧分布 次生石英岩型网脉浸染状矿石,最厚达 15 m,膨缩 变化大,向外过渡为含碧玉岩残块的次生石英岩和 碧玉岩。

对矿体所采基本化学样分析表明,块状 — 角砾 状矿石 Cu 品位主要变化于 1.80% ~ 12.81%,网脉 状 — 浸染状矿石 Cu 品位主要变化于 0.46% ~ 2.78%,矿石中 Zn含量普遍较低,主要变化于 0.02% ~ 0.38%,仅个别达 0.78% ~ 1.22%。

利用组合样所作矿石多元素分析结果列于表 1。从表中数据可知,该矿床中块状角砾状矿石与次 生石英岩型网脉浸染状矿石间有显著的地球化学差 异,铜、硫含量前者远大于后者,而砷、金含量前者远 低于后者。

硅化与成矿关系密切,各类矿石中均有石英与 硫化物密切相伴。矿体北西侧碧玉岩强烈次生石英 岩化,由碧玉岩向近矿方向逐渐过渡为含碧玉岩残 块次生石英岩和次生石英岩型网脉浸染状铜矿石。 矿体内的基性火山岩角砾多绿泥石化、帘石化及碳 酸盐化,偶见残留少量钠长石。

矿石类型	样号	Cu (10 ⁻²)	Zn (10 ⁻²)	$\frac{S}{(10^{-2})}$	Pb (10 ⁻²)	Ni (10 ⁻²)	(10^{-2})	$As (10^{-6})$	$Te (10^{-6})$	Ag (10 ⁻⁶)	Au (10 ⁻⁹)
块状角砾状矿	ZH1	8.89	0.30	25.59	0.0052	0.000	0.0279	49.18	5.00	7.5	88.11
	ZH2	5.84	0.12	24.41	0.0002	0.000	0.0873	79.66	6.30	7.0	37.89
网脉浸染状矿	ZH3	1.49	0.06	14.41	0.0055	0.000	0.0199	396.4	4.90	7.0	109.02
	ZH4	1.16	0.05	12.56	0.0020	0.000	0.0063	144.8	3.90	8.0	210.36

表 1 石居里 号沟铜矿床矿石组合样分析结果

测试者:西安地矿所测试中心。

号沟铜矿床(原 57 号矿点)中,矿体呈倾斜产 出的不规则板状,大致呈北东 45 °方向延伸,倾向北 西,倾角约 38 °,矿体厚度 3 m~27 mm,延深已控制 约 25 m。该矿体顶板为碧玉岩,矿体两侧围岩为基 性火山熔岩。

矿石矿物有黄铁矿、黄铜矿、闪锌矿等,脉石矿 物主要为石英、绿泥石、次为黝(绿)帘石、方解石。

矿石类型按构造特征主要有块状矿石、角砾状 矿石和网脉状矿石 3 种。块状矿石由含少量石英的 硫化物集合体组成;角砾状矿石由含少量石英的硫 化物集合体胶结蚀变的基性熔岩角砾组成;网脉状 矿石由含石英硫化物集合体充填蚀变基性火山岩中 网状裂隙构成。这 3 种矿石在矿体中由上向下,由 中心向边部依次分布,并互为过渡关系。

各类矿石拣块样分析,Cu含量变化于1.83 % ~ 13.44 %,Zn含量变化于0.02%~2.20%。

矿体两侧围岩蚀变有绿泥石化、帘石化、硅化、 碳酸盐化等,其中硅化与矿化关系最为密切,石英与 硫化物相伴产出。

从已知地质特征分析,石居里 号沟和 号沟 块状硫化物矿床应属"塞浦路斯型",矿体明显受海 底热液喷流裂隙系统控制。例如 号沟矿床的含矿 岩系产状(向北西倾),与矿体产状(向南东倾),完全 相反,矿石中见基性火山岩角砾等。因此,决不能用 层控矿床的原则指导此类矿床的勘查。

4 成矿物质来源与成矿温度

海底块状硫化物矿床是海水与火山岩在高热背 景下作用的产物,成矿物质必定来源于二者之中。 Rona(1983)曾对洋底热泉进行分析,并用海水在 350 与玄武岩反应,将与玄武岩反应后的热水同普 通海水对比表明,Si、Ba、Cu、Zn、H2S、Mn等发生强烈 富集。石居里 号沟铜矿石及外围九个泉铜矿石中 黄铁矿的铅同位素组成同各自矿区范围玄武岩的铅 同位素组成相近(表 2),由此为线索结合上述试验 规律,推断本区成矿金属主要来源于蚀变玄武岩。

硫同位素组成可为硫的来源提供信息。石居里 沟及外围铜矿床、矿点中黄铁矿和黄铜矿的硫同位 素 ³⁴S 值变化于 1.5‰~7.7%之间(表 3),这可能 是玄武岩中幔源硫与海水硫酸盐所还原硫的不同比 例混合结果。幔源硫的理论值 ³⁴S = 0;奥陶纪海水 硫酸盐 ³⁴S 值约为 25‰格里年科等,1974),Sangster (1986) 注意到火山成因块状硫化物矿床的硫化 物 ${}^{34}S$ 值比同期海水硫酸盐低约 17 ‰,认为该值与 海水硫酸盐被细菌还原 H₂S 产生的分馏值一致 (转 引自夏林圻等,1998),我们由此推出本区纯海水源 硫化物理论值 ${}^{34}S = 8$ ‰。将上述 1.5 ‰~ 7.7 ‰的 值解释为这两个端员的不同比例混合是合理的。

表 2 石居里地区玄武岩和铜矿石铅同位素组成

样号	岩性	产地	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	μ		(Th) (U)
83106	玄武岩	九个泉	18.408	15.499	38.215	9.27	34.71	3.63
90609	玄武岩	九个泉	18.099	15.549	38.215	9.39	36.82	3.79
83105	玄武岩	九个泉	18.340	15.485	38.064	9.25	34.33	3.59
90410	玄武岩	石居里	17.902	15.508	37.962	9.34	36.50	3.78
73116	黄铁矿	石居里沟	17.58	15.50	37.32	9.37	36.90	3.81
72814	黄铁矿	九个泉	18.02	15.55	37.39	9.39	35.00	3.61

引自夏林圻等,1998。

表 3 石居里地区黄铁矿、黄铜矿硫同位素组成

样品	71508	71503	71503	73116	73116	72808	72814
产地	摆浪沟	摆浪沟	摆浪沟	石 沟	石 沟	九个泉	九个泉
矿物	黄铜矿	黄铜矿	黄铁矿	黄铜矿	黄铁矿	黄铁矿-	+ 黄铜矿
³⁴ S ‰	4.0	7.7	7.0	6.3	5.6	1.5	3.2

引自夏林圻等,1998。

根据夏林圻等(1998)已发表本区硫化物矿石矿 物物理、化学、包裹体资料。区内黄铁矿、黄铜矿的 P-N导型均为N型,即空穴导电型,补偿热电动势 变化于-16.66 mV~-26.4 mV,表明形成温度较 高。黄铁矿 Co/Ni比值为18.49~36.28,远大于1, S/Se比值为5185~13085,远小于20000,显示热液 成因。石英是本区铜矿石与硫化物密切共生的矿 物,包裹体数量多,体积小,最大3μm,一般为1μm 左右,形态主要为圆形及不规则状,可能有较多的次 生包裹体。石居里 号沟铜矿床石英包裹体的均一 温度为302~145。据我们对块状矿石光薄片在 显微镜下观察,石英大多呈它形集合体填隙硫化物 间隙,由此推断硫化物形成温度高于145,主要矿 化期温度大致在中温热液范围。

5 结论

综上所述,初步取得如下认识:

石居里沟富铜块状硫化物矿床的成矿环境为中 奥陶世弧后扩张脊;容矿岩石为蛇绿岩套上部火山 岩或火山—沉积岩系;矿体赋存部位受海底热液喷 流裂隙系统的控制;含矿热液起源于海水与玄武岩 在高温下的反应,其中成矿金属主要来自火山岩,而 矿化剂硫则为二者硫不同比例的混合。

[参考文献]

[1] 夏林圻,夏祖春,徐学义.北祁连山海相火山岩岩石成因[M].北京:地质出版社,1996. (下转第 31 页)

7

部和内部富集成矿,是矿区最主要的成矿作用。王 家店花岗岩体内的成矿作用和潜在远景可与河北省 峪耳崖金矿类比。

高级变质区的金矿找矿和研究工作,由于受到 前人的高级变质区无大矿的束缚,进展不大,在高级 变质区内寻找小而富金矿和开展中生代花岗岩体内

深部金矿潜在远景研究,应得到重视。 [参考文献]

- [1] 吕建生,等. 辽北 吉南前寒武纪地质与金矿[M]. 吉林:长春 人民出版社,1996.
- [2] 吉林省地质矿产局.吉林省区域地质志[M],北京:地质出版 社,1989.

THE METALLOGENIC CHARACTERISTICS OF THE WANGJIADIAN GOLDMINE IN JIL IN

KANG Bin ,BO Ji - rong ,DONG Di - guang

Abstract : It is suggested that based on the Huiquanzhan dome structure and linear metallogenic domain , the periphery and center of the Wangjiadian granite was mineralized under Paleozoic especially Mesozoic magmatism. The prospecting potential in depth remains to be investigated.

Key words :Wangjiadian ,gold mine , metallogenic characteristics

 、市 彬(1959年-),男。1987年毕业于昆明工学院地质系,现任吉林有色地质勘查局六0四队总工程
 师。一直从事金矿地质找矿工作。
 通讯地址:吉林省桦甸市 桦甸市 604地质队 邮政编码:132400

(上接第 22 页)

- [2] 夏林圻,夏祖春,任有祥,等.祁连山及邻区火山作用与成矿[M].北京:地质出版社,1998.
- [3] 冯益民,何世平.祁连山大地构造与造山作用[M].北京:地质出版社,1996.
- [4] 龚全胜. 肃南塔洞沟早奥陶世蛇绿岩的成因和侵位[J]. 甘肃地 质学报,1997,6(1):23~36.
- [5] 李文渊,夏林圻,夏祖春,等.北祁连山早古生代弧后盆地火山 作用及成矿作用—以肃南石居里沟富铜块状硫化物矿床为例 [J].地质论评,1999,45(增刊).
- [6] Roma P A ,et al. Hydrothermal processes at sea floorspreading Genters[M]. New York: Plenum Press, 1983.
- [7] 格里年科, B. A. (1974). 硫同位素地球化学[M]. 北京:科学技 术出版社,1980.

METALLOGENIC FEATURE OF SHIJULIGOU COPPER - RICH ORE DEPOSITS IN NORTHERN QILIAN MOUNTAINS

YANG He - qun ,LI Wen - yuan ,ZHAO Dong - hong ,SONG Zhong - bao

Abstract :Discusses metallogenic feature of Shijuligou copper - rich ore deposits in Northern Qilian Mountains. The main conclusions are as follows : The metallogenic setting was back - arc spreading ridge in Meso - Ordovician Epoch; The host rock belongs to volcanic rocks or volcanic - sedimentary rocks in the upper part of ophiolite suite; The location of ore bodies were controled by the system of fissures in the sea floor; The hydrothermal ore - forming solution originated from reaction between sea - water and basaltic rocks under high temperature, in which, the ore - forming metal elements came from the basaltic rocks and the mineralizer sulfur from both the former and the latter.

Key words :Northern Qilian Mountains ,Shijuligou , back - arc spresding ridge , copper ore

第一作者简介:

Ð

杨合群(1953 年 -),男。1982 年毕业于北京大学地球化学专业,1989 年在西安地质学院矿床学专业获 硕士学位。现为中国地质调查局西安地质矿产研究所副研究员,主要从事矿床学科研工作。 通讯地址:西安市友谊东路166 号 中国地质调查局西安地质矿产研究所 邮政编码:710054