内蒙古苏尼特左旗韧性剪切带研究

高德臻¹.徐有华²

(1. 中国地质大学,北京 100083; 2. 赣州南方工业学校,赣州 341000)

[摘 要]通过对韧性剪切带的研究,认为:这些韧性剪切带形成于印支运动,与中朝板块和西伯利 亚板块在早二叠世末对接碰撞造山有成生联系。

[关键词]苏尼特左旗 韧性剪切带 印支运动

[中图分类号]P542⁺.3 [文献标识码]A [文章编号]0495 - 5331(2000)05 - 0031 - 05

内蒙古苏尼特左旗地区位于中朝板块北缘中 段。该地区在三叠纪时期发育了一系列韧性剪切变 形带。巴彦温都尔—乌拉音敖包即为其中最为典型 的一条。

1 宏观展布特征

巴彦温都尔—乌拉音敖包韧性剪切带位于苏尼 特左旗正南约4 km。西起巴彦温都尔,总体呈 NE50 ~ 60 方向延伸至乌拉音敖包以西止,全长约 20 km,宽1 km~3 km(图1)。

该韧性剪切带所经过的地层主要为下二叠统哲 斯组的复成分砾岩、砂岩、灰岩及部分下二叠统大石 寨组安山岩、晶屑凝灰岩与印支期二长花岗岩。韧 性剪切带本身受到了与海西末期褶皱构造相伴生的 NEE 向高角度逆冲断层的限制,使其北部与南部均 以断层为界,并与未经受变形的岩石分割开来。

图 1 巴彦温都尔 — 乌拉音敖包韧性剪切带构造图

Q+N—上第三系、第四系; P₁²³ —下二叠统哲斯组二段; P₁²³ —下二叠统哲斯组一段; P₁^{d2} —下二叠统大石寨组二段; PD —二叠 纪闪长辉石岩; TA —三叠纪二长花岗岩; JDS —侏罗纪二长花岗岩; KSE—白垩纪钾长花岗岩;

1—平移断层;2—性质不明断层;3—韧性剪切带;4—逆断层

2 野外构造特征及运动学标志

2.1 透入性面理

剪切带内的透入性面理主要为糜棱面理。糜棱 面理总体走向为 NE50 °~ 60 °,但倾向有变化。对不 同地段与不同岩性中测量的糜棱面理产状约 300 个 进行投影统计(图 2)^[5],其特点如下:巴彦温都尔区 段强应变带的糜棱面理具有两个同等级优势产状, 分别为 170 ° 30 °,330 ° 60 °,二者的交面线产状为 250° 18°。极点图解为单斜对称图形,所反映的变 形特征为递进的均匀剪切变形(图 2(a))。巴彦温 都尔北侧弱变形带其主优势产状为走向 55°,倾角近 直立;次优势产状为 155° 60°。极点图解反映了左 行均匀剪切递进变形的变形特征(图 2(b))。剪切 带南侧花岗岩中糜棱面理的主优势产状为 168°

65°,次优势产状为192°60°。极点图解为三斜对称,反映了非均匀变形与两期组构相互叠加的变形 特征(图2(c))。额尔登敖包(巴润萨拉西北部)区

[收稿日期]1999-02-01;[修定日期]1999-10-01;[责任编辑]张启芳

³¹

段糜棱面理的主优势产状为 160 ° 71 °,次优势产状 为 177 ° 0 °,336 ° 68 °。前者的极点图解为三斜对 称,反映了多期组构叠加及左行剪切变形特征;后者 极点图解则为单斜对称,反映了均匀递进剪切变形 特征(图 2(d))。从上述投影图解可以看出,在该韧 性剪切带中心部位其变形特征以递进的均匀剪切变 形为主;而在剪切带之边部则具有左行剪切与多期 组构相互叠加的特点。

图 2 面理极点赤平投影图解 (下半球投影,据赵国春,1995)

(a) —等密线为0-1.9%-3.9%-5.8%-9.8%(51个)

(b) —等密线为 0 - 2.2 % - 4.5 % - 6.7 % - 8.9 % - 11.2 % (67 个)

(c) —等密线为 0 - 2.5 % - 4.1 % - 5.9 % - 7.5 % - 9.1 % (59 个)

(d) —等密线为 0 - 1.1 % - 2.3 % - 3.5 % - 4.7 % - 7.1 %(128 个)

2.2 线理

该韧性剪切带中发育两种线理,即拉伸线理与 褶纹线理。

1) 拉伸线理:主要产于哲斯组中经韧性变形的 砾石,经韧性变形的砾石被拉伸成短棒状,其长短轴 之比总体为3 1~15 1。在巴彦温都尔,变形砾石 的长轴统计优势产状为 210°~230° 30°±,在额尔 登敖包则为 40°~65° 10°~30°。反映出在剪切带 两端物质以近水平方向运动为主。2) 褶纹线理:主 要表现为糜棱面理发生膝折后所形成的线理。这种 线理走向 NE 且倾角陡立,亦反映了近水平的左行 剪切运动方式。

2.3 剪切褶皱与面理置换

在该韧性剪切带的内部,宏观面理为糜棱面理, 它几乎完全破坏与置换了原生层理,在哲斯组复成 分砾岩中,砾石 ab 面的定向排列形成了与糜棱面理 产状一致的面理,但从对相同成分层的追索与观察可以看出,这种面理实际上是成分层,即层理发生剪切褶皱时的剪切面理(图3(a))。

2.4 S-C组构与旋转构造

如前所述,剪切带中砾径较大砾石的 ab 面即为 糜棱面理(Sc)。它们之间往往发育一系列由砾径较 小的砾石扁平面的定向排列所形成的且与糜棱面理 斜交的一组面理(Ss),其与糜棱面理共同组成了 S - C 组构,并指示了沿 Sc 的左行剪切特点(图 3 (b))。

砾径较大砾石除被强烈压扁拉长之外,在砾石 长轴的两端,由砂、泥质成分组成的拖尾现象表明砾 石曾发生过旋转。旋转运动的方向亦为左行剪切 (图 3(c))。

图 3 韧性剪切带的变形构造 (a) —剪切褶皱与糜棱面理;(b) —S —组构;(c) —旋转砾石

3 显微构造特征及运动学标志

经对糜棱岩切片的显微镜下观察,从初糜棱岩 系列中,诸如波状消光、动态重结晶、变形纹、核幔构 造、石英丝带构造等显微构造种类繁多且发育齐全。 但能指示剪切方向的显微构造有如下几种:

3.1 显微褶皱

这种构造发育于原岩为钙质、砂质及凝灰质岩 石的糜棱岩中,表现为糜棱面理的膝折及平卧褶皱 等。依据褶皱的轴面倒向可以判定其运动方向为左 行剪切。

3.2 旋转碎斑

这种构造发育普遍。碎斑主要由长石、石英及 云母等矿物组成,并在长轴两端形成明显的拖尾现 象,如云母鱼等。根据拖尾指向判断其运动方向为 左行剪切。

3.3 多米诺骨牌构造

这种构造多发育于花岗质及泥质糜棱岩中,形 成这种构造的矿物以斜长石、黑云母为主。其表现 为沿这些矿物的节理面或微破裂面发生剪切而形成 一套斜列的条形矿物的堆砌。根据斜列剪切面的倒 向判断其运动方向为左行剪切。

4 剪切带内部化学成份的改变

由于剪切带中的剪切变形增加了矿物内部的应 力能,引起了矿物的重结晶,有利于流体相的流动, 改变了总的化学成份和加速了矿物的化学反应。作 者对该剪切带内部钾长石的残斑及其边缘细粒所做 的电子探针分析(表 1)。

我 1 带队们电子抹针力机结米												%0	
	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	MnO	CrO	NiO	FeO	P_2O_5	TOTAL
残斑	0.40	0.00	18.83	65.29	16.94	0.03	0.02	0.09	0.01	0.10	0.26	0.00	100.97
边缘细粒	0.53	0.11	18.46	0.13	0.08	0.13	0.08	0.00	0.14	0.21	0.00	0.00	99.37

从表 1 可以看出,从残斑-边缘细粒钾长石成 分的变化特点为: Na₂O, MgO, CrO, NiO 等略有增 加;而其他化学成分呈减小趋势,其中尤以 K₂O 流 失量最为明显。

5 应变测量

5.1 测量的对象及方法

在巴彦温都尔 - 乌拉音敖包韧性剪切带中存在 一套已发生韧性剪切变形的砾石与砂砾等下二叠统 哲斯组复成分砾岩。在显微镜下观察,砂砾未见明 显压溶现象。所以为野外与室内的应变测量提供了 良好的对象。

在实际工作中,作者对变形砾石在野外选取3 个互相垂直的平行面理、平行线理与垂直线理的面 进行直接测量;在室内则对按上述3个面的方向进 行切片,在显微镜下进行测量。在3个互相垂直的 平面上均采用 Rf/法,对变形砾石的长/宽以及长 轴的倾向与倾角进行测量。

在每个测点上,砾石测量均在 50 个以上;砂砾 测量则要求大于 100 组以上的数据。沿该韧性剪切 带的走向,在巴彦温都尔进行了 4 个砾石测量点与 2 个砂砾测量点的测量;在东北部的额尔登敖包则 进行了 6 个砂砾测量点的测量。

5.2 数据处理

5.2.1 平均半径与压缩量的计算

由已知的 $a \ b \ c$,利用公式 $R = (abc)^{1/3}$ 求出变 形椭球体平均半径 R 的相对长度,代入公式 = R - C/R,计算出变形椭球体压缩量。

5.2.2 付林(Flinn)指数的计算

付林指数表示岩石中不同类型的均匀应变,通 过付林图解来反映由不同变形机制而导致的不同类 型的应变。

付林指数 K依下式计算:

 $K = (a - 1)/(b - 1) , a = (1 + e_1)/(1 + e_2)$, b = (1 + e_2)/(1 + e_3)

式中 a_xb 1,1+ e_1 ,1+ e_2 ,1+ e_3 分别表示 应变椭球的长半轴,中间半轴与短半轴的相对长度。 5.2.3 改进后的付林指数的计算

Ramsay 对付林图解进行了改进。改进后的付 林指数 K依下式计算:

K = (1 - 2) / (2 - 3) $\exists \mathbf{r} \mathbf{r} \ln a = 1 - 2, \ln b = 2 - 3$

5.3 应变分析

对所测量数据进行上述计算处理以后,得出处 理结果(表 2,表 3)。

从两表可以看出,巴彦温都尔—乌拉音敖包韧 性剪切带可以明显分为强变形带与弱变形带两段。 在西南部的巴彦温都尔段内,变形三轴之比平均为 3.13 1 0.33,相对平均半径为1.02,压缩量为 67.2%。在东北部的额尔登敖包段内,变形砂粒三 轴之比为1.725 1 0.37,相对半径为0.84,压缩量为 56.0%。后者明显弱于前者。

将表中的付林指数及改进后的付林指数投于图 解中(图 4),可以看出巴彦温都尔的 6 个点落在 K=1 的直线附近,表示为无体积损失,简单剪切的平 面应变状态;额尔登敖包的 2 个点落在 K=1 的直 线附近,另 4 个点则落在 $K=0.01 \sim 0.19$ 的区域内, 代表 3 轴扁椭球体,反映了该段呈压扁型应变状态。

	三轴	倾向	倾角	三轴之比	相对平	口绽	Flinn 参数		Flinn 指数 (K)	对数 Flinn 指数			
砾石产地				a_1 b_1 c_1	均半径 (%)		а	b		$\ln a = 1 - 2$	$\ln b = \frac{1}{2} - \frac{1}{3}$	$K = \frac{\ln a}{\ln b}$	
1122 高地	a_1	35	40	3.20 1.00 0.31	1.104	61.1	3.20	3.22	0.99	1.16	1.17	0.99	
	b_1	241	47										
	c_1	136	13										
1119 高地	a_1	23	31	3.13 1.00 0.43	0.997	68.8		2.32	1.60	1.14	0.84	1.35	
	b_1	273	61				3.13						
	c_1	145	46										
公士市	a_1	50	4										
舒布嘎 尔敖包	b_1	315	71	3.24 1.00 0.26	0.949	72.6	3.24	3.84	0.79	1.18	1.35	0.87	
	c_1	146	28										
1072 高地	a_1	80	14	3.67 1.00 0.26	0.987	73.7	3.67	3.84	4 0.94	1.30	1.35	0.96	
	b_1	318	52										
	c_1	180	30										

表 2 巴彦温都尔变形砾石分析结果

表 3 镜下变形砂粒分析结果

标本号	三轴	倾向	倾角	三轴之比	相对平	正姲	Flinn 参数		Flinn	对数 Flinn 指数			
				a_1 b_1 c_1	均半径 (R)	(%)	а	b	指数 (K)	$\ln a = 1 - 2$	$\ln b = \frac{1}{2} - \frac{1}{3}$	$K = \frac{\ln a}{\ln b}$	
HD →1 ×	<i>a</i> ₁	346	31	1.11 1.00 0.35	0.73	52.1			0.06	0.104	1.051	0.098	
	b_1	151	56				1.11	2.86					
	<i>c</i> ₁	49	0										
HD	a_1	330	51	1.21 1.00 0.42	0.76	51.3	1.20	2.38	0.145	0.184	0.867	0.212	
	b ₁	159	35										
	<i>C</i> ₁	59	7					17	-71-				
	<i>a</i> ₁	271	10		1.03	59.2	2.59	2.83	1.15	0.952	0.867	1.100	
HD	b ₁	182	40	2.59 1.00 0.42									
	c_1	4	16	-51	7 (\	. //	677						
HD20 × HD23 ×	<u>a</u> 1	229	48	2.06.1.00.0.40	1 07	00	2.00	2 50	1 27	1 110	0.016	1 220	
	01	192	41	5.06 1.00 0.40	1.07	02.0	5.00	2.30	1.57	1.110	0.910	1.220	
		300	25										
	$\frac{u}{b_1}$	3/	80	1 36 1 00 0 35	0.78	55.1	1.36	2.86	0.19	0.307	1.051	0.292	
	<u> </u>	230	1	1.50 1.00 0.55									
	a1	314	1	1.03 1.00 0.29	0.67	56.7	1.03	3.45	0.01	0.030	1.238	0.024	
HD	b1	186	89										
110 51	<i>c</i> ₁	44	1										
$\mathrm{HD} \to \mathrm{^+}$	a_1	324	28	2.69 1.00 0.38	1.01	62.4	2.69	2.63	1.03	0. 990	0.967	1.023	
	b ₁	191	12										
	c_1	88	43										
HD2 +	a_1	331	3	2.87 1.00 0.38	1.09	65.1		2.63	1.15	1.054	0.967	1.090	
	b1	220	78				2.87						
	c_1	56	12										

注:+ —巴彦温多尔地区; × —额尔登敖包地区

从上面的分析可以看出,巴彦温都尔—乌拉音 敖包韧性剪切带以简单剪切的平面应变为主,其东 北段由于后期燕山岩体在北侧的侵入而叠加了压扁 型应变。

图 4 付林图解 (a) —付林图解;(b) —改进后的付林图解

6 形成时间、条件及在构造发展中意义

巴彦温都尔—乌拉音敖包内花岗质糜棱岩系由 其南部的二长花岗岩体经韧性剪切所形成。花岗质 糜棱岩的 K-Ar 年龄值为 197.9 Ma,而其南部的二 长花岗岩体(TA)的 U-Pb 同位素年龄值为 223 Ma。因此证明该韧性剪切带形成的时间应为三叠 纪晚期。

根据辛普森(Sibon R H,1997)对韧性剪切带的 研究认为,在长英质岩石中,石英由脆性变形向韧性 剪切变形的转化条件相当于低绿片岩相,相当温度 为 300 ,在正常地温梯度下相当于约 10 km 的深 度。

而该韧性剪切带内新生变质矿物相当于钠长石

7

+绿帘石 + 阳起石 + 绿泥石 + 石英的矿物组合,而 且石英、钾长石与斜长石已普遍发生了韧性剪切变 形与动态重结晶。

利用带内岩石中共生的斜长石与钾长石中钠的 端元组分计算温度的方法,计算出其形成温度的平 均值为 380 。

利用带内多硅白云母单个晶胞中硅原子数以及 上述的温度值,在多硅白云母的 *P*-*T*稳定曲线上 投点,得出其形成的压力值约 500 Mpa,变质作用属 于中压型变质相系,其地温梯度为 21 / km。

根据上述所得的温压条件,参照 Sibson(1976)断 层岩双层模式图,推测巴彦温都尔 - 乌拉音敖包韧 性剪切带的形成深度应在 15 km ~ 20 km 之间。

对内蒙古中部地区的构造研究,长期以来人们 多把重点置于海西运动晚期所形成的构造形迹。对 印支运动所形成构造则很少提及,这其中一个重要 的原因在于将该地区属于印支期的构造形迹划归于 海西晚期。

自早二叠世中期至三叠纪是内蒙古中部地区全面抬升的阶段,也是该区晚古生代 - 早中生代构造 变形的重要阶段。大面积的深成岩的侵位活动也主要集中于这一时期(苏尼特左旗地区为 250 Ma~192 Ma)以及三叠系地层的大面积缺失等都暗示着两大

板块对接以后的继续对挤作用。在这一区域构造应 力场的作用下,形成了一套印支期构造形迹。

通过上述的研究可以看出,苏尼特左旗地区发 育的韧性剪切带,即为两大板块对接后的持续挤压 作用下在印支期的构造变形。它是在海西末期两大 板块的对接碰撞所形成的褶皱、断裂的基础上成生 与发展起来的。它代表了该地区在地壳较深层次的 构造变形,其应变方式以无体积应变的简单剪切应 变为主,运动方向以平面左行为主。根据北京大学 邵济安教授(1989)^[2]的研究认为,在该时期,除韧性 剪切带外,地壳浅层次的逆冲推覆构造为中朝板块 北缘中段的另一种构造变形方式。

[参考文献]

- [1] 刘瑞洵.显微构造地质学[M].北京:北京大学出版社,1998.
- [2] 邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版 社,1989.
- [3] 郑亚东. 岩石有限应变测量与韧性剪切带[M]. 北京:地质出版 社.
- [4] 内蒙古地质矿产局.内蒙古自治区区域地质志[M].北京:地质 出版社.
- [5] 赵国春.内蒙古苏尼特左旗巴润萨拉北东向强变形带的构造特 征及其形成环境[J].现代地质,1995,9(2).
- [6] Sibon R H. Fault rocks and fault mechanisms [J]. J Geol Soc, London, 1997.

STUDY OF SUNITZUO QI DUCTILE SHEAR ZONE IN INNER- MONGOLIA

GAO De - zhen , XU You - hua

Abstract :Sunitzuoqi locates in the middle part of the northern margin of Sino - Korea region. Bayanwundur - Wlainaobao ductile shear zone is the typical one in them. This ductile shear zone were formed in the stage of Indosinian movement. The formation of the ductile shear zones in this region are related to the collision and the orogeny between the Sino - Korean and Siberian plates during the end of the early Permian.

Key words :Sunitzuoqi , ductile shear zone , Indosinian movement

第一作者简介:

高德臻(1956年-),男。1982年毕业于武汉地质学院北京研究生部构造地质学专业,获理学硕士学位。 现任中国地质大学(北京)副教授,主要从事构造地质与区域地质科研和教学工作。

通讯地址:北京市海淀区学院路29号 中国地质大学地矿系区域地质调查研究所 邮政编码:100083