中国金矿床 T/S(T/V) 分布及其意义

连长云1,苏小四2

(1. 中国科学院地球物理研究所,北京 100101;2. 长春科技大学,长春 130026)

[摘 要]对中国大陆境内 138 个已勘探岩金矿床的 T/S(T/V)数据进行了统计,结果表明, T/S (T/V)分布是一个多重分形。成矿作用强度具有层次性和一定尺度内的无标度性,这一事实构成了建 立矿床分级预测模型的基础。此外,T/S(T/V)的统计研究提供了划分矿床级别的另一可行途径。

/关键词/金矿床 中国 T/S(T/V)分布

[中图分类号]P618.51 [文献标识码]A [文章编号]0495-5331(2000)05-0011-04

储量(矿床规模)作为矿床属性中最重要的一个 参数,一直被作为统计研究的主要对象;同时,矿床 规模分布的研究构成了人们探索矿床成因、进行成 矿预测的一个重要侧面。

关于矿床规模分布的系统研究,最早可追溯到 50年代。自 Krige 发表"维特瓦特斯兰德矿山评价 基本问题的统计方法 "一文之后[1],认为矿床(包括 油气田)规模分布的母分布为正态分布的观点一直 占据统治地位,并延续至今[2~8]。然而近年来,这一 观点受到了挑战。日益增多的事实表明,矿床的母 分布属于分形分布[9~19],对数正态分布只是由于发 现过程或经济因素而导致规模分布产生低端截断所 致[9,10]。分形分布已经在矿产资源总量预测中得到 应用,在指导矿产勘查工作部署等方面也将发挥积 极作用[19~21]。

事实上,矿床储量是在一定的勘探面积 (S)和 勘探体积(V)(等于勘探面积 ×勘探深度)内获得 的,而后一因素 $(S \cup V)$ 的作用却常常被人们所忽 视。举个例子,一个 100 t 的金矿床自然要比 50 t 的 金矿床大许多,但若后者产于比前者更小的面积和 深度内,则其经济意义并不一定比前者逊色。因此, 早在 1977 年,张贻侠在研究冀东变质铁矿时即提出 建立矿床的 T/S(T/V) 模型的设想,并进行过试 探 。由于 T/S(T/V) 考虑了参数 S(V) ,因而实 际上相当干加入了经济因素。研究 T/S(T/V) 分 布特征,对深入理解矿床规模含义,指导实际的矿产 资源评价工作无疑具有重要的现实意义。

1 中国金矿床 T/S(T/V) 分布

矿床的 T/S(T/V) 的含意是在多大的范围内

集中了多少矿量,不妨称之为成矿强度系数。通过 对矿床的 T/S(T/V) 变化规律的研究,可望得出表 征该类矿床矿化不均匀性(强弱)的统计概念,籍以 对未知地区资源潜力及某一地区地质工作程度进行 有效评估[22]。

本文系统收集了中国大陆境内近30年来已评价 或勘探的 440 个岩金矿床的品位、吨位、勘探面积和 勘探深度等资料,其中经勘探的矿床 138 个,经普查 和详查的矿床 285 个,经评价的矿床 17 个。考虑到 矿床勘查程度的不一致性和结论的可靠性,以下仅对 已勘探矿床的 T/S(T/V) 分布特征进行讨论。

矿床的 $T \setminus T / S \setminus T / V$ 数据见表 1。其中, n 为矿 床储量排序, n1为 T/S排序, n2为 T/V排序。可以看 出,吨位较大的矿床,其 T/S 或 T/V 一般也较大,但 不尽然。如 138 个金矿床中,吨位列第 3 位 (T = 67.928t) 的金矿床,其 T/S、T/V 分别列第82位和第98位, 比较靠后。而吨位列第13位(T = 27.827t)的金矿床, 其 T/S、T/V 分别列第 1 位和第 4 位。对所有矿床的 T/ S(T/V) 进行了统计,在频数 —T/ S(T/V) 关系图 上.它们具有相似的形式,二者均由两个总体构成。其 中, T/S 变化的拐点位于 2 t/km^2 附近, T/V 变化的 拐点位于 5 t/km³ 附近(图 1)。

可以看出,金矿床的 T/S(T/V)分布构成一个 多重分形。多重分形指的是由有限几种或大量具有 不同分形行为的子集合叠加而成的非均匀分维分布 的奇异集合,它是原始分形概念对于非均匀分形的 自然推广[23~24]。与单一分形不同,多重分形包含 多个层次,每个层次具有不同的统计特征。显然,图 1 中频数 — T/S(T/V) 变化曲线由两个分形子集合 构成。T/S 小于 2 t/km^2 (或 T/V 小于 5 t/km^3)的金

[收稿日期]1999 - 04 - 27; [修定日期]1999 - 10 - 01; [责任编辑]张启芳 张贻侠. 试论前寒武纪变质铁矿的地层研究 —以迁安、密云、宽城矿区为例:见:在上海全国铁矿会议上的报告,1977。 矿床构成的分形称之为低成矿强度分形。在这一集合里,尽管金矿床的吨位 T 可以变化很大,但在一定的标度范围内,它们具有无标度性,即自相似性。因此代表了成矿强度系数较低的一类矿床的成矿作用。T/S 大于 2 t/km^2 (或 T/V 大于 5 t/km^3)的金矿床构成的分形称之为中等成矿强度分形,这一类中的金矿床具有较高的成矿强度系数,尽管一些金矿床的吨位 T 可能并不大。

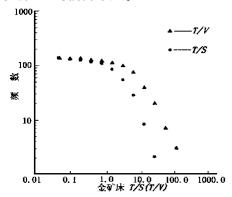


图 1 中国金矿床频数 —T/S(T/V)分布

2 金矿床 / S(T/V) 分布的意义

金矿床 T/S(T/V) 的统计研究只是初步的,但已经给出了有意义的启示。T/S(T/V) 分布的意义主要表现在以下几个方面。

1)揭示了成矿作用强度具有层次性和无标度性的事实。成矿作用在时间上的旋回性和空间上的分

级性已为众所共识,金矿床的 T/S(T/V) 分布则体现了成矿作用强度的层次性和无标度性。人们已经认识到,正常岩石和矿床之间,成矿元素的含量存在一个"自然"的界限^[25],这就是矿与非矿的差别。 T/S(T/V) 的多重分形分布也意味着矿床的成矿强度存在一个"自然"的界限。在此界限两侧,具无标度特征的金矿床构成成矿强度不同的分形总体。 Mandelbrot 曾指出,高品位铜矿床可看做由低分维分形集合"集中"或"支持"的一类分形系统,而低品位铜矿床则可视为受到一个高维分形集合的支持^[24],揭示了与此相类似的事实。

2)指出了建立矿床模型的新途径。矿床建模的一般做法是,首先将矿床进行归类,在总结该类矿床的地质、地球物理和地球化学特征的基础上,建立矿床的描述模型。经过定量过程模型和矿床系统模型的补充,则可以建立矿床的成因模型^[22]。显然,矿床的归类是建立矿床模型的重要步骤,而做好这一点并非易事。因为矿床类型主要根据成因划分,后者却往往不易搞清。*T/S(T/V)*统计结果暗示我们,依据成矿作用强度的不同,可对金矿床进行相应的划分,并对不同强度级别的金矿床(一类)的特征进行总结(暂不考虑其成因),解释这些特征与成矿强度之间的内在联系,进而建立金矿床的预测模型(唯象模型)。分形方法在建模过程中将发挥积极的作用。

《 · · · · · · · · · · · · · · · · · · ·	b 探岩金矿床的 $T \setminus T / S$ 和	T/V
---	----------------------------------	-----

n	T	T/S	n1	T/ V	n2	n	T	T/S	n1	T/V	n2	n	T	T/S	n1	T/ V	n2
1	81.591	21.471	3	57.719	6	47	6.346	0.084	131	0.121	136	93	2.804	1.122	99	3.739	94
2	73.563	9.195	14	11.494	42	48	6.259	7.451	17	37.256	12	94	2.784	1.141	97	3.511	96
3	67.928	1.698	82	3.330	98	49	6.091	6.549	26	18.929	26	95	2.701	0.150	125	0.390	128
4	61.956	18.775	5	46.936	8	50	5.863	3.783	45	9.433	51	96	2.687	1.134	98	5.669	82
5	57.982	2.416	63	2.842	103	51	5.862	1.484	87	2.968	101	97	2.590	2.90	62	7.848	66
6	45.681	26.405	2	105.621	3	52	5.860	2.790	59	6.313	76	98	2.535	2.112	69	8.450	60
7	42.206	3.517	47	8.256	61	53	5.776	0.289	121	0.963	119	99	2.490	0.711	110	1.779	111
8	7.338	12.875	8	30.510	15	54	5.616	2.808	58	8.046	64	100	2.464	1.283	93	8.556	59
9	34.311	4.416	7	25.698	20	55	5.421	2.711	60	7.228	72	101	2.463	1.232	9	2.401	107
10	31.908	7.821	16	14.376	37	56	5.415	2.091	71	3.168	99	102	2.263	1.432	88	5.097	86
11	28.415	11.276	10	37.586	11	57	5.262	2.940	55	5.879	80	103	2.189	3.648	4	15.862	35
12	28.097	21.286	4	39.418	10	58	5.241	0.087	130	0.209	135	104	2.183	0.975	103	7.859	65
13	27.827	30.919	1	160.713	4	59	5.218	1.812	78	10.066	47	105	2.162	2.402	64	16.015	34
14	27.198	10.879	11	29.011	19	60	5.175	4.539	36	18.528	28	106	2.032	0.076	13	0.255	132
15	26.367	8.789	15	39.950	9	61	5.093	1.698	82	5.874	81	107	2.000	1.042	10	2.934	102
16	23.359	1.168	96	1.553	114	62	5.052	1.837	77	5.484	83	108	1.989	1.243	94	10.359	46
17	22.964	3.827	42	7.655	70	63	4.982	2.076	72	4.417	89	109	1.950	2.708	61	8.598	58
18	22.012	5.659	31	9.656	49	64	4.803	5.458	32	54.580	7	110	1.944	0.091	129	0.454	126
19	21.267	11.312	9	17.927	29	65	4.779	1.648	83	3.832	93	111	1.862	9.310	13	136.912	1
20	20.992	6.997	20	13.856	39	66	4.765	1.791	80	5.971	79	112	1.818	2.020	74	9.758	48
21	20.440	6.813	23	21.978	23	67	4.678	3.262	52	9. 139	53	113	1.775	1.109	100	6.806	73
22	19.047	6.614	25	20.603	24	68	4.670	0.222	123	1.112	118	114	1.671	0.017	138	0.069	138
23	15.447	6.106	29	30.528	14	69	4.625	0.771	107	3.854	92	115	1.620	0.506	112	2.664	104
24	15.262	3.816	44	4.769	88	70	4.582	3.818	43	12.728	40	116	1.598	0.799	10	2.663	105
25	14.725	0.218	124	0.655	125	71	4.528	5.881	30	22.617	21	117	1.583	0.293	119	1.221	117

表 1 中国部分已勘探岩金矿床的 T, T/S 和 T/V																	
n	T	T/S	n1	T/ V	n2	n	T	T/S	n1	T/V	n2	n	T	T/S	n1	T/V	n2
26	14.280	6.491	27	8.114	63	72	4.496	4.496	37	29.973	17	118	1.574	2.811	57	5.176	85
27	14.241	4.579	35	6.188	77	73	4.451	4.451	39	17.804	30	119	1.573	0.052	135	0.117	137
28	11.920	4.110	40	8.221	62	74	3.738	3.429	49	17.147	31	120	1.516	0.972	104	6.479	74
29	11.007	0.225	112	0.952	120	75	3.497	2.331	65	4.317	90	121	1.514	0.757	108	2.638	106
30	10.727	6.704	24	9.578	50	76	3.489	1.396	91	6.068	78	122	1.456	0.091	129	0.291	130
31	10.674	1.334	92	8.895	55	77	3.360	1.556	85	7.778	67	123	1.418	4.727	34	2.598	13
32	10.662	0.305	117	0.725	122	78	3.359	3.449	48	11.233	43	124	1.355	0.082	132	0.668	124
33	10.582	1.400	90	2.291	108	79	3.351	6.981	21	30.092	16	125	1.318	3.030	54	16.031	33
34	10.000	0.400	115	1.556	113	80	3.317	1.906	76	6.354	75	126	1.291	0.129	126	0.430	127
35	9.943	6.905	22	29.012	18	81	3.201	1.600	84	5.230	84	127	1.257	0.393	11	1.309	115
36	9.788	1.799	79	3.599	95	82	3.181	3.314	51	10.689	44	128	1.210	0.303	118	3.477	97
37	9.408	0.470	113	0.876	121	83	3.104	0.857	105	1.681	112	129	1.112	1.049	101	3.085	100
38	9.219	0.542	111	1.235	116	84	3.080	0.716	109	2.138	109	130	1.049	2.098	70	16.784	32
39	9.027	2.257	66	3.911	91	85	3.044	3.044	53	8.697	56	131	1.046	0.062	134	0.362	129
40	8.955	4.477	38	11.540	41	86	3.036	2.024	73	8.650	57	132	1.032	0.034	136	0.287	131
41	8.234	3.361	50	7.673	69	87	3.032	1.516	86	5.053	87	133	1.021	6.381	28	122.716	2
42	7.887	0.292	120	0.681	123	88	2.989	9.963	12	22.141	22	134	0.936	0.125	127	0.220	134
43	7.535	7.176	19	18.737	27	89	2.979	4.965	33	19.244	25	135	0.891	2.227	67	15.577	36
44	7.354	3.830	41	7.476	71	90	2.860	1.430	89	7.688	68	136	0.863	1.918	75	9.132	54
45	7.271	7.271	18	10.387	45	91	2.814	2.814	56	14.070	38	137	0.837	0.419	11	1.804	110
46	6.686	14.858	6	59.431	5	92	2.809	2.161	68	9.395	52	138	0.778	0.026	137	0.229	133

3) 提供了进行矿床级别划分的另一个可行指标。对矿床规模的划分,目前国内外几乎均采用矿床储量 T(总金属量) 这一参数。通过对矿床储量的统计研究并结合各国的具体实际,划分矿床的小、中、大及超大型界限。正如本文一开始就指出的那样,参数 T/S(T/V) 体现了矿床的综合价值,具有比矿床储量 T 更令人感兴趣的现实意义,因此,T/S(T/V) 的统计研究可作为进行矿床分级的另一条可行途径。中国金矿床的 T/S(T/V) 的统计研究表明,T/S=2 t/ km^2 和 T/V=5 t/ km^3 可作为中国大型金矿床和中小型金矿床的分界线。大于此值者,尽管其储量可能比一般的按储量划分的大型矿床标准要低,但它们仍可以称之为具有较大经济意义的大型矿床。

3 讨论

应该说,矿床的 T/S(T/V)研究刚刚开始,尽管这一思想很早就被提了出来。基于中国的实际情况,这方面有大量的工作要做。首先需要建立完整、准确的数据库,其中最大的困难在于对每一个矿区勘探面积和勘探体积的具体厘定。不妨做些约定,以达成共识。另外,吨位至少为多大,才能称之为矿床?从数学角度而言,S或V的值显然不能为零,因此也存在一个最小值的问题。这个最小值多大合适,恐怕也得作出限定。此外,T/S(T/V)研究的意义在于预测。在预测一个地区是否存在较强的成矿作用以及在给定面积内矿床的吨位是多少等问题上,T/S(T/V)将发挥积极的作用。由此看来,本文只是抛砖之作,很多工作尚需进一步深入。

[参考文献]

- Krige D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. South Africa, 1951, 52:119 ~ 139.
- [2] Krige D G. On the departure of ore value distributions from the lognormal model in South African gold mine [J]. South African Inst Mining and Metallurgy, 1960, 231 ~ 244.
- [3] Arps J J, Roberts T G. Economics of drilling for Cretaceous oil on the east flank of the Denver Julesburg basin [J]. Am Assoc Petroleum Geologists Bull, 1958,42:2549 ~ 2566.
- [4] Kaufman G.M. Statistical Decision and Related Techniques in Oil and Gas Exploration[J]. New Jersey: Prentice - Hall. Englewood Cliffs, 1962.
- [5] Kaufman G M. Discovery Process Models [A] . In : Adelman M A , Houghton J C , Kaufman G M ,and Zimerman M B ,eds. Bailinger Press , $1983.213 \sim 268.$
- [6] Forman D J , Hinde A L . Improved statistical method for assessment of undiscovered petroleum resources [J]. Am Soc Petroleum Geologists Bull , $1985,69:106 \sim 118$.
- [7] David J C , Chang T. Estimating potential for small fields in mature petroleum province [J]. Am Assoc Petroleum Geologists Bull , 1989 , $73:967\sim976$.
- [8] Power M. Lognormality in the observed size distribution of oil and gas pools as a consequence of sampling bias [J]. Mathemat Geol ,1992 ,24: $929 \sim 945$.
- [9] Drew L J , Schuenemeyer J H , and Beviek W J . Estimation of the future rates of oil and gas discoveries in the western Culf of Mexico . U . S[Z]. Geological Survey Professional Paper , 1982. 1252.
- [10] Schuenemeyer J H, Drew L J, Root D H, and Attanasi E D. Estimating potential for small fields in mature petroleum province: discussion[J]. Am Assoc Petroleum Geologists Bull, 1990, 75:1761 ~ 1763.
- [11] Attanasi E D, Drew L J. Lognormal field size distributions as a consequence of economic truncation[J]. Mathemat Geol, 1985, 17:335 ~ 351.
- [12] Drew L J , Attanasi E D , and Schuenemeyer J H. Observed oil and

- gas field size distributions: A consequence of the discovery process and prices of oil and gas[J]. Mathemat Cool, 1988, 20:939 ~ 953.
- [13] Drew L J. Oil and Gas Forecasting [M]. Oxford: Oxford Univ. Press, 1990.
- [14] Beker R A, Cehman H M, James W R, and White D A. Ceologic field number and size assessments of oil and gas plays[J]. Am Assoc Petroleum Geologists Bull, 1984,68:426 ~ 437.
- [15] Houghton J C. Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields [J]. Mathemat Geol, 1988, $20:907 \sim 937$.
- [16] Scholz C H, Barton C C. The fractal nature of hydrocarbon deposit -1. Size distributions[J]. Am Assoc Petroleum Geologists Bull, 1991, 75:668
- [17] Brett J E, Feldcamp L D. The evidence for and implications of a fractal distribution of petroleum reserves [M]. Society of Petroleum Engineers, SPE25826, 1993. $73 \sim 84$.
- [18] Crovelli R A ,Barton C C. Fractals and the Pareto distribution applied to petroleum accumulation - size distributions [A]. In: Barton C C, Scholz C H. Fractal in Petroleum Geology and Earth Processes. New York: Plenem Press, 1995. 59 ~ 72.

- [19] Mast R F, Dolton GL, Crovelli R A, et al. Estimates of undiscovered conventional oil and gas resources in the United States a part of the nations energy endowment [M]. U S. Geological Survey and Minerals Management Service, 1989.
- [20] Barton C C, Scholz C H. The fractal size and spatial distribution of hydrocarbon accumulations: implication for resource assessment and exploration strategy [A]. In: Barton C C, Scholz C H. Fractal in Petroleum Geology and Earth Processes. New York: Plenem Press, 1995.13~34.
- [21] La pointe P R. Estimation of undiscovered hydrocarbon potential through fractal geometry[A]. In: Barton C C, Scholz C H. Fractal in Petroleum Geology and Earth Processes. New York: Plenem Press, 1995.35~57
- [22] 张贻侠. 矿床模型导论[M]. 北京:地震出版社,1993.2~3.
- [23] Grassberger P. Generalized dimensions of strange attractors [J]. Phys. Lett. $,1983,97A:227\sim230.$
- [24] Mandelbrot B B. Multifractal measures especially for the geophysicist
 [J]. Pure and Appl. Geophys. ,1989 ,131 :5 ~ 42.
- [25] Skinner B J. A second iron age ahead ? [J]. American Sci. , 1976 , $64\!:\!258 \sim\! 269.$

T/ S (T/ V) DISTRIBUTIONS AND IMPLICATION OF GOLD DEPOSIT IN CHINA

LIAN Chang - yun ,SU Xiao - si

Abstract: As an important parameter that has been widely researched, tonnage of metallic deposit or accumulation of oil and gas field is available. In the spite of the normal or lognormal size distribution of mineral resources, a new viewpoint fractal, is put forward. Based on the statistical consequence of collected data of T/S (T/V) of 138 gold deposits explored in China, a multifractal for T/S (T/V) distribution has been obtained, and the result implies that 1) the hierarchy of metallogenic intensity and scale - invariance exist; 2) deposit modeling may be conducted from a new way different from conventionality and 3) the classification to gold deposits can be refine by analyzing the statistic feature of T/S (T/V) of deposits.

Key words:gold deposit, China, T/S(T/V) distribution

第一作者简介:

连长云(1965 生 -),男。1988 年毕业于长春地质学院应用地球化学专业,1991 年获应用地球化学专业硕士学位,1997 年获矿床学专业博士学位。现在中国科学院地球物理研究所做博士后,主要从事应用地球化学、矿床学和非线性成矿预测等科研工作。

通讯地址:北京市大屯路甲 11 号 中国科学院地球物理研究所 邮政编码:100101

《英汉地球科学缩略语词典》征订启事

地球科学是研究地球及类地行星起源,演变、运动规律,内部结构等理论问题的科学。地球科学在人类社会发展中也发挥着愈来愈重要的作用,随着自然、生态环境(水、自然灾害)对人类的影响越来越大,客观上也要求地球科学除要解决能源和矿产问题外,还必须担负起解决社会可持续发展重大问题的责任。水土保持、植被恢复、环境保护、能源节约等都离不开地球科学知识,参与探讨和解决当代与未来社会可持续发展的重大问题,已成为地球科学研究的基本内容之一。

地球科学工作者在实际工作中需要促进学科交叉与交流的工具书,进入21世纪网络信息社会尤为迫切。

由国土资源部中国国土资源经济研究院张锡濂、吴春荣主编的《英汉地球科学缩略语辞典》,将于 2000 年 10 月由科学出版社出版,国内外发行。

本词典选词专业范围包括地质学、地理学、地球物理学、地球化学、大气科学、海洋科学、环境科学及为之服务的国土资源经济学、采矿学、选矿学、水科学、地图学、大地测量学、遥感、地理信息系统、全球定位系统、计算机技术等。

本词典经中国科学院刘东生院士、欧阳自远院士等审校。由中国科学院陈述彭院土作序。

全书收词 4 万余条,170 余万字,大32 开本,平装,每册定价50元。欲购书者请通过当地邮局将款汇至:

北京市 259 号信箱张锡濂收,邮编 101149。

须开发票者请注明