维普资讯 http://

ww.cqvip.com

60 -62

中速喷浆法的研究与应用

TU 473.13

蒋红斌

(肇庆市建筑工程质量监督中心站。肇庆。526022)

利用建立室内模拟旋喷装置,对喷浆提速进行了研究。模拟试验成果及初步 分析表明,适当提高喷浆速度,不会影响成桩质量。

中速喷浆 关键词 模拟试验

桩基础

为了解决单管旋喷法成桩直径小及承载 力偏低等问题,长沙冶金研究院于1990年 初,成功地开发了高压旋喷双液分喷新方法。 它有别于"单管法"、"二重管法"及"三重管 法"。应用于广州花都市花都宾馆工程桩(主 楼高23层)、长沙市银行楼工程桩(楼高18 层)等;其单桩承载经静压测试均在 160t 以 上。双液分喷法施工工序为钻孔→喷水→喷 浆。因而使得浆液浪费较为严重。为此作者 进行了模拟及施工试验,成功地提出了中速 喷浆法。

模拟试验装置

模拟试验在校钻机房内进行,主要设备 有 XY-2 型钻机、BW-150 型衡阳泵、有机 玻璃筒、各种胶管及现场施工用的喷浆喷头 (喷嘴直径为 3.0mm)。

1.1 XY-2型钻机

由于其最低正转速为 65r/min,因而试 验时,不可能达到 20~25r/min 的要求。卷扬 机上提为人工提升。

1.2 有机玻璃筒

高 2m,内径 0,28m,外径 0,30m,两端可 用有机板封住,其上、下两端有阀门。

2 旋喷节约水泥研究

2.1 已施工工程水泥消耗情况

本文 1994年11月收到,王梅编辑。

_ 平均米**耗** 进尺 消耗水泥量 工程名称 (m) 水泥量(kg) 韶关低铜矿 13708.5 4332 316.0 韶关中和料场 5540.1 1728.2 311.9

表 1 每米耗水泥

(1)每米耗水泥鬼轰1

长沙市银行楼 7929.9 2305.5 290.7 长沙果综合楼 425.4 144.3 339.2

(2)每立方米耗水泥用量 设所施工的 旋喷桩,上部直径为 0.55m,下部直径为 1. 0m 的梯形。经过计算可得每立方米耗水泥 量约为 645km/m3。

2.2 模拟试验

2.2.1 有机玻璃筒有关计算

(1)体积

 $V = \pi R^2 h = 0.14^2 \times 2\pi = 0.123 \text{m}^3$

(2)正常水泥用量

 $W = 645V = 645 \times 0.123 = 79.3 \text{kg}$

2.2.2 试验内容及步骤说明

- (1)每次试验加水泥 100kg,而实际输送 到筒内约为 70kg, 因为搅拌箱水泵抽不完, 故管路要占 30kg。
- (2)用水泵 47L/min 这一档,抽满整筒 时间为 3'10",计算实际泵量不足 40L/min。
- (3)第1次纯水泥浆试验,先往有机玻璃 筒中加水到 1.5m 处,然后喷浆。
- 、(4)第2、3次粘土加水泥浆,先称取粘土 放入有机管中,用水喷射使粘土分散充满整

60

个有机管,然后再喷浆。

- (5)第4次,同(4)步骤,只在喷浆时,从 上端投砂。
- (6)每次做完试验后停顿半小时,取样。 试验序号为上、中、下。上样品为离顶端 0.5 m 处,中为 1m,下是离底端 0.5 处,取样测试后 放入模块中。
- 2.2.3 模拟试验数据结果(见表 2)。

从表中可看出,试样比重都低于室内试验,抗压强度相应也低,这是管中粘土不够之

因。在相同条件下加砂试样强度显著提高。从 试验 2、3、4 号可知,粘土含量对试样比重之 差有一定影响,粘土多,则试样比重之差相对 减少,也就是说其粘度大了,筒中颗粒下降就 要慢一些,同时,从比重也可看出,整个管中 的浆体还是较均匀的,说明这种提升速度是 可行的。

2.2.4 模拟试验与实际施工数据(见表 3)

表 2 模拟试验数据表

	 泵压	泵量	提升时间	试样	试样	抗压强度 mPa		
名 称	mPa)	水里 (L/min)	提升速度 (m/min)	(s)	比重	序号	7d	28d
	0.7~0.8	40	1	96	1. 26	上	1. 65	2. 38
纯水泥浆					1.32	中	2. 13	4.00
					1.40	下	2.40	7.75
40kg 粘土 加水泥浆	0.7~0.8	40	1	112	1.36	上	1. 28	3.12
					1.40	中	1.44	4.50
					1.45	下	1.79	4. 75
60kg 粘土 加水泥浆	0.7~0.8	40	1	115	1.55	上	1.58	4. 98
					1.56	中	1. 93	5.16
					1.60	下	1.88	4.80
o1 who begin	0. 7~0. 8	40	1	110	1.58	上	2. 72	9.12
50kg 粘土 30kg 砂加水泥浆					1.59	#	3. 20	12.65
					1.60	下	3. 17	10.28

表 3 试验与实际施工数据对比表

 名称	泵量	泵压	提升速度	转速	体积之比	
	(L/min)	(mPa)	(m/min)	(r/min)	本林之 几	
模拟	40	0.7~0.8	1	58	1	
实际	90	4.2~4.5	0. 20	20	4	

注:实际旋喷桩直径按 0.6m 计算。

根据理论公式可得出射流中心轴线上距 喷嘴 x 距离处的压力 P_x :

$$P_x = (36 - 42) \, \frac{d_0^2}{x^2} \cdot P_0$$

式中: P_0 一 喷嘴出口处的压力值; d_0 一 喷嘴直径。

$$P_{x \neq x} = (36 - 42) \frac{d_0^2}{0.14^2} \cdot \varphi^2 \cdot 0.8$$

$$P_{x \neq x} = (36 - 42) \frac{d_0^2}{0.3^2} \cdot \varphi^2 \cdot 4.5$$

$$\therefore \quad \frac{P_{z\#}}{P_{z\#}} = \frac{0.8 \times 0.3^2}{0.14^2 \times 4.5} = 0.816$$

从计算可知,实际施工中离喷嘴 0.3m 处的喷射动压比模拟试验离喷嘴中心 0.14m 处的喷射动压高,而模拟试验时粘土能被充分搅拌均匀,再加上实际泵量是模拟的 2 倍以上,故而在实际工作中提升速度提高 1 倍,即由原来的 0.2m/min,变成 0.4m/min 是可行的。

3 酚酞法显示水泥浆上返具体时间

3.1 酚酞指示剂

酚酞分子式 $C_{20}H_{10}O_{\bullet}$, 白色或带黄色的白色晶状粉末, 无嗅, 在空气中不稳定, 不溶于水, 易溶于碱性水溶液中, 作为指示剂配成

○ 1%的乙醇溶液、pH 值变色范围、水溶液 无色、8、2~9、8 为紫红色。

3.2 硅酸盐水泥的水化

水泥是一种多矿物的聚集体,其主要熟料矿物组成是硅酸三钙、硅酸二钙,铝酸三钙和铁铝酸四钙等4种。在完全水化的水泥石中,水化硅酸钙占50%以上,氢氧化钙约为25%左右,其它均占比例很少;因而水泥水化后成碱性。

3.3 酚酞法显示水泥浆上返具体时间

根据雷诺数 Re.我们可将喷浆时孔内流态分成 3 种,即紊流、层流和静止"爬杆"流。喷浆时先在孔底定喷 3min,此时紊流段只是横向扩大,纵向高度基本不变,而层流段因得到越来越多的能量,会引起高度的增加,静止"爬杆"流段则高度减小,沿钻杆流出的增加的是喷水时所形成的泥浆。随着喷浆时间的增加,是流段高度会继续扩大,而静止"爬杆"段则越来越短,到一定时间,沿钻杆的提升,层流段高度会继续扩大,而静止"爬杆"段则越来越短,到一定时间,沿钻杆。2 8m、10m、12m 钻孔酚酞法显示,大都为钻杆提升到钻孔深度的一半时,加酚酞于孔口、流出的流体变为紫红色,这说明水泥浆已迫

近孔口。立刻采用中速提升法,使得喷浆时间缩短,达到节约水泥之目的。

4 中速喷浆在工地应用

广州工地为围护桩施工,根据开挖深度 及地层不同,工地分成 20 个区。

4.1 节约水泥计算

设钻孔孔深为 8.0m.慢速喷浆为 25cm/min,中速为 35cm/min,孔底定喷 3min.

(1)慢速提升喷完全孔所需时间

 $T_1 = 3 + 800/25 = 35 \text{min}$

(2)中速喷浆所需时间:

• $T_2 = 3 + 400/25 + 400/35 = 30,43$ min

可以得出中速喷浆少用 4.57min,如果 泵量为 90L/min,则少用水泥浆 V:

$$V = 4.57 \times 90 = 411.3L$$

设水灰比为 1:1, 比重为 r=1.52, 则少用水泥量 W。

W=V/r=411.3/1.52=270.6kg

4.2 施工区水泥用量对比

施工 1-6 区用慢速喷浆,19、20 区采用中速喷浆,其水泥用量对比见表 4。

We was a series of the series								
区号	1	2	3	4	5	6	19	20
进尺(m)	348.50	263. 51	204	144.50	1205.5	323	725. 7	1191.5
水泥用量(t)	8 0. 2 5	64. 25	48. 65	33.35	279.7	76	149, 15	251
每米耗水泥量(kg)	236.0	243.8	238. 5	230.8	232.0	235. 3	205.5	210.7

表 4 施工区水泥用量对比表

注:各区水泥消耗不计补凹槽的,一般每孔均要补 100kg 左右,

从上表中可以看出慢速提升每米耗水泥量要比中速提升多用 30kg 左右,若孔深按8m 计算,则每个孔多用水泥 240kg,这与上面计算相合。

4.3 质量评述

从 19、20 区抽芯孔 zk20-24-1,zk19-33-2 来看,全孔岩心完整,且强度高,送

地矿部广州中心试验室检验,两个淤泥地段抗压强度达到 4.05mPa。相当于现场试验含40%~50%水泥的淤泥试验样强度,达到或超过前 6 区淤泥段抗压强度,其质量是可信的。因而中速提升喷浆在后面的施工中得到了广泛地推广。