3/1- 12

维普资讯 http://www.cqvip.com

P615.510.2

西秦岭南亚带硅灰泥岩型金矿床的同位素地质学研究

(核工业北京北所研究院·100029)

西秦岭南亚带硅灰泥岩型金矿是我国近年来发现的一种新的很有 前景的金矿类型。简要地介绍了矿床地质特征,系统地叙述了金矿床的 矿物、矿石和岩石硫、氧、铅、碳、硅同位素和矿物包裹体同位素的组成 特点,提出了对本区金矿成矿主要矿质来源、介质性质、成矿年龄及矿 旧位象把队子 床成因等的认识。

金矿床 同位素组成 关键词 硅灰泥岩型

1 矿床地质

西秦岭南亚带硅灰泥岩 型金矿床是我国近年来发现 的一种新型的很有远景的金 同空梦响的 矿类型,目前已探明的有拉 尔玛矿床(大型)、邛莫矿床(中小型)和牙相 矿点。在矿区含矿地层和毗邻地层中,还分布 着若干个大中型的铀矿床,并已建矿。该金矿 是一种独特的金矿类型。在矿化方面、它不同 于赋存在碳酸盐岩系中的卡林型矿床,亦不 完全同于黑色页岩系中的金矿床。金的矿化 产于寒武系太阳顶群含碳硅岩、硅板岩和粉 砂质板岩中,受断裂带及两侧的裂隙带、碎裂 岩石带控制。其主要特征是:

(1)金矿体呈透镜状、似层状,成群产出, 大多数已出露地表,但延深很浅(小于 150m).

(2)金矿石可明显地划分为两类:①分布 广、连续性好的低品位矿石,与硅化的岩石有 关;应含量变化大,连续性差的高品位矿石, 与石英-重晶石-迪开石细脉或网脉有关。

(3)矿石矿物种类较多(已经鉴定定名的 就有 40 种以上),但常见的矿物种类不多,且

本文 1994 年 12 月收到,侯庄有编辑。

总量很少,分布分散。主要的矿石矿物有自然 金、辉锑矿、黄铁矿、辰砂、灰硒汞矿、雄黄、雌 黄.少量的其他金属硫化物和沥青铀矿等。

成矿作用

(4)矿床元素组合主要是 Au-Sb-As -Hg 以及 Cu、Mo、Ni、U 等。

(5)自然金是本区唯一的独立金矿物,此 外,还有若干含金矿物(金含量1%~5%)。 自然金呈外形极为多样的显微状和次显微粒 状,呈包裹体状赋存于石英和重晶石中,少量 赋存千黄铁矿、辉锑矿和灰硒汞矿中。

(6)硅化是分布最广、且与金矿化关系最 密切的围岩蚀变,其次是重晶石化、迪开石化 蚀变。

矿石和矿物的硫同位素组成

2.1 基本特点

该金矿床中广泛分布各种硫化物、硫盐 和硫酸盐矿物。这些矿物的硫同位组成,反映 成矿物质的同位素比值和矿石沉淀过程中引 起的同位素分馏作用。矿床中硫化物的δ³⁴S 值主要取决于硫的天然来源。根据 50 件矿物 硫同位素分析结果,其 d³⁴S 特征值按样品矿 物统计如表 1,组成分布见图 1。

由统计图表可知,矿床硫同位素特征值

的组成和分布很不集中,δ⁺S的变化范围很 宽(-28.3‰~+33.3‰),离散度很高,塔式 分布很不明显,与陨石硫的同位素组成完全 不同,而具有地壳硫同位素组成的基本特点。

2.2 黄铁矿的 δ³⁴S 值

分析了产于地层中的黄铁矿和金矿石中 黄铁矿的硫同位素组成。产于硅岩、硅板岩层 中属沉积一成岩作用形成的层纹状、条带状、 结核状黄铁矿,其 δ^{**}S 多数为正值,主要变 化范围在一10.0%~+25.0%。之间,个别高 负值样品可能与后期热液的改造作用有关。 沉积一成岩黄铁矿的同位素组成及分布是由 其沉积环境和微生物细菌作用等因素决定 的,它反映了地层中的沉积硫源。

采自硅岩,粉砂质板岩,英安玢岩型金矿 石中呈粒状,细脉状的黄铁矿,其δ³⁴S值与 地层中黄铁矿基本一致,具有继承性特征,但 变范围均较小(-16‰~+13.3‰)。

↓ □ ↓ 型	伴数	平均值	支 化 范 閉	- 吸 茎
,近积成岩蚌黄铁矿	1;	12 3	$-21.60 \sim +24.6$	46.2
产 夜成日 朝黄牛矿	7	4.5	$-25.2 \sim +13.3$	35, 5
日 钟 四	2	-7.5	-1.6 - +14.2	17.6
磁・黄・特・む	1	-17.5	-17.5	17.5
辉 转 石	10	~ 7. 8	$-28.3 \sim +1.9$	30. 2
重晶石	12	+19.0	+11.6~+33.3	18.7

表1 金矿床的硫同位素特征值(6°°S,%。)

在:样品大部分另自拉尔玛研环,部分采自邓莫研床和子相研告。黄铁研,白铁研,辉等研研同位案由核工业北京地质 研究院型室分析,重晶石硫固定素由中科院地质研究所分析。

图 1 西泰屿全矿床硫同位素组成直方图 1一成岩期黄锷矿;2一热液期黄芒矿;3一 日铁矿;4一磁黄铁矿;5一辉锑矿;6一重晶石

2.3 辉锑矿的δ³*S值

矿石中的辉锑矿 $\delta^{44}S$ 多数为负值,变化 范围为-28、3%。~+1、9%,表明它比围岩和 矿石中的黄铁矿更富集 $\delta^{44}S$ 。辉锑矿与黄铁 矿具有不同的 $\delta^{34}S$ 值,并不意味着它们有不 同的硫源。根据 Ohmoto 等人的实验,处于硫 同位素平衡交换的共生黄铁矿和辉锑矿,在 温度为 120~250 0 范围内,黄铁矿一般要比 辉锑矿高出约 4.2%。~7.0%。张理刚(1988) 指出,氧逸度的急剧增大可以导致 $\delta^{34}S$ 变 小。因此,本区黄铁矿与辉锑矿 $\delta^{34}S$ 值的差 异可能由于后者硫的氧化态较高,或者前者 存在对硫引起的。它们的 *d*³⁴S 值虽有不同, 但仍然具有同一的地层硫源。

2.4 重晶石的 δ³⁴S 值

重晶石的 δ^{**S} 值均以表明富重硫的正 值 为 特 征 (+ 14.6%₀~ + 33.3%₀,平 均 23.3%₀)。重晶石的 δ^{**S} 高于黄铁矿,但两者 的组成和分布特点则很相似。另外,本区重晶 石的 δ^{**S} 值多数在寒武纪海水硫酸盐的变 化区间值之间。这些都反映其硫源可能是地 层中的沉积硫。

2.5 脉岩硫化物的 δ³4S 值

矿床内含金闪长玢岩矿石中的白铁矿、 磁黄铁矿 δ⁴⁴S 值的分布范围很宽(-17,5%。 ~+14.2%。),离散度达 31.7%。这一数值特 征与岩浆硫的明显不同,而与地层硫的相似。 这就排除了脉岩型金矿化的硫来源于岩脉本 身或深部岩浆来源的可能性。

2.6 硫同位素组成随时间的演化特点

一般来说,矿前阶段(包括沉积一成岩和 变质阶段)形成的硫化物和成矿后期以至表 生期形成的硫化物 δ³⁴S 多数为正值,且变化 范围较大;成矿阶段与金共生的黄铁矿和辉 锑矿的 δ¹⁴S 多数为负值,变化范围相对较 小。本区在金成矿的热液活动过程中,硫同位 素组成对原岩地层既有继承性特点,又发生 了一定程度的分馏。在矿前期和热液成矿早 期,发生了硫化物的沉淀,其中相对富集了 δ³⁶S。滞留于热液中的 δ³⁴S 直到主成矿期才 以硫酸盐和部分硫化物的形式沉淀下来,并 大量地富集了 δ⁵⁴S。

3 岩石和矿物的氧同位素

分析了矿前、矿期石英和硅岩的氧同位 素,从获得的 13 件样品的结果看(表 2),可 以明显地分出两种石英。一种是矿前的乳白 色块状不含金石英,其 δ^{18} O值较高,变化范 围为 19.67%。~23.84%。,平均 22.0%。,其数 值与硅岩的氧同位素组成很相近(平均 22.4%);另一种为主成矿期的杂色细脉状或 网脉状含金石英,其 δ^{18} O 明显偏低,变化范 围为 8.75%。~10.46%。,平均 9.7%。。

从两种石英氧同位素组成明显不同分 析,前一种石英亲缘于围岩(硅岩),其 SiO。 源于变质期硅岩的分泌作用,因而它的氧同 位素组成与硅岩的基本一致;而后一种石英 源于与金成矿期有关的热液体系,它的氧同 位素组成反映了成矿热液作用的特征,证实 在热液体系中发生了明显的同位素分馏过 程。需要指出的是,呈角砾状石英的样品Q₆, 38 其δ*O值为 16.91%,介于上述两种石英之 间。该石英与同样呈角砾状的黄铁矿共生;从 颜色和产状看,它可能是来自矿前的变质期 石英,但又遭受了金成矿期热液作用的强烈 改造。因而它的氧同位素特征值与硫同位素 一样,与其来源矿物相比已经发生了较大的 改变。

表 2 石英及硅岩氧同位素分析结果

样品号	则定对象 []	δ ^{ικ} Οι ¥, j	采样 也 卢
LA-6	团块代石美	23, 81	邛 Te7
-107	围块状石笔	19.67	拉 Tc-97
	国铁铁石革	21.48	拉 Te-102
Ο.	闭块左石荚	22, 23	拉 CM-109
O;	团性长石英	22.84	拉 CM-109
О,	角叶内石英	16.91	₩ 2K - 7.2
L A 73		9.70	拉 Te-105
— 9e	网脉状石英	9.80	拉 Te-103
-41	细味状石英	8 75	疗ごTe-109
T 68	相时状石革	10.46	<u>拉</u> Teーさ
O_1	佳 岩	20.90	≓5 Te+48
O_2	産 岩	23. 24	-邓 DP-10
О,	표 늄	23. 08	IF Te-311

由核工业汇章地质研究完固室分析。

4 矿物包裹体同位素

4.1 石英的包裹体同位素组成

金矿床矿物气液包裹体的同位素组成及 其变化,可以直接反映成矿溶液稳定同位素 的原始组成特征。对矿物包裹体氢氧同位素 组成的研究,有助于解决矿质来源、矿液及矿 床成因。对本区金矿床 12 件含金石英进行了 矿物包裹体氢氧同位素测定(表 3)。

石英包裹体的 δD 均为较大的负值。除 矿前的变质期白色团块状石英和肠状石英外 (-52.93%。),含金石英包裹体的 δD 平均值 为-84.80%,明显低于变质期水的 δD 值, 而与当地泉水和雨水的 δD 值相近(-92. 43%,~-117%。)。将石英包裹体的 δD 值与 δ¹¹ O_{H₂0}值共投于泰勒(1979)图 2.全部含金 石英的投影点均落于岩浆水与变质水分布区 之外,其中部分投点落于雨水线附近,表示成 矿热液流体源于大气水。另一些投点由于包 裹体的氧同位素值变化范围较大(-11⁰₄)、 +15%),并明显大于雨水和泉水的δ¹⁸O_{H 4}

值(一13.9%~一15.6%),其位置离大气降 水线较远。这可能是成矿的热液水已与围宕 发生了氧同位素平衡交换作用,使 δ⁴⁸()_{用2}距 大气降水线发生了较大的漂移。当然,也不能 完全排除有少量残存的变质水或岩浆水与大 气水相互掺合参与对成矿的影响。

表 3 石英及重晶石包裹体的氯氧同位素分析结果

桂号	ī. 物	∂Dsmowtingt	$\delta^{13}O_{\mathbb{H}_{10}}(\mathbb{C} \to \mathrm{SMUW}$		
ſ-~+8	が色石美	-73.05	- 1.03	327	
LA - 48	桔鱼 L 车	-53.61	-106	271	
LA-6	こ色と革	-\$2.93		206	"非机", "
LA - 161	回自告有美	<u> </u>	17 7	272	
LA-163	阿白色石类	-87	11.7	260	
IA-168	机自己覆塞	-8 :	11.5	2"4	
LE-t	[᠇] ᠇ <u>ᠥ</u> ᆈ	-77.46	3. 57		
1.E-7	生色石英	— 56. 4 <i>3</i>	4.24		
LE-1	4% 医弯语号	—			- 1
LE - 5	内红色重晶石	—71. EC	-5.4^{-}		
LE-8	均仁色重新石	—80. SC	-4.23		
1.8 - 12	東 15	-137.36	13. 84		

主教工业、空地常研究院「生い好。

成矿期的大气水与现代大气降水的同位 素组成不尽一致,一般成矿时代愈新二者的 差别就愈小。据刘家军(1992)研究,本区现代 温泉水的 dD-d^{*}()_用,和紧邻大气降水线,表 明现代温泉水是由现代大气水补给和供应 的。而现代温泉水的 dD 值与成矿介质水的 差异不大,温泉石灰华的 d^b()也与成矿期石 英和重晶石的氧同位素值相差不多;再考虑 到本区金成矿的时代很新,均一致说明成矿 期的介质溶液是被加热的大气降水,而非岩 浆期后热液来源。

4.2 重晶石的包裹体同位素组成

所測矿床中重晶石包裹体水中的 of) 范围(-78.50%;~-82.80%;)与石英包裹体的 基本一致:而其 δ^{ib}()_{H,0}值与雨水和现代温泉 水的也比较相近。

5 岩石和矿物的铅司位素

共分析了岩石、矿石和单矿物(石英、重

39

晶石、辉锑矿、黄铁矿)铅同位素样品 33 个 (表 4)。所有矿石样品都具有多期硅质交代 或充填的特征。对样品的铅同位素组成进行 了统计分析(表 5),可得出以下认识:

5.1 所有样品均明显地富含放射性成因

铅²⁰⁶Pb,尤其是金矿石全岩样品,(²³⁶Pb)最高 可达 39.44%,平均达 29.264%。这与本区金 矿床中普遍存在铀的异常,以致出现沥青铀 矿的现象是一致的。

表 4 金矿床的铅同位素分析结果(%)

			_							
—— 三号	栏号	—————————————————————————————————————	^{∠₀} ₽Ъ	2016 Pb	²⁰⁷ Pb	зэрь	-°•₽b/*⊶₽b	sus. BP\sut. bp	²⁰⁴ РЪ/204РЪ	Ē
1	CM-1-2		1.359	24, 982	21.214	52, 500	18.343	15.610	38.631	
2	LA-5	重晶石	1.342	34. 726	20.837	53.083	15.425	15. 354	39.555	ļ
3	- 12	良也	1.139	23.790	21, 955	52. A16	16.532	15.257	36.703	
4	— ń	石英	1.303	26. 885	20, 877	50, 935	20. 633	16.022	39.091	矿期
5	-19	砲岩な石	1.326	26.641	20, 788	51.240	20. 691	15.567	35.647	1
6	20	珪岩矿石	1.184	35.520	19,441	45.855	28.311	10,394	38.757	
7	-21	硅岩矿石	1.258	19.617	CO, 148	45.997	26.537	16-061	38.932	ĺ
e	-22	磑岩守石	1. 129	31.776	19,956	47,050	25.847	16.238	38, 283	1
9	-41	石英	1.300	28.180	20.558	49, 962	21.667	15.814	38.432	产柜
10	- 57	辉锑矿	1.364	24.891	01.299	52.447	18.249	15.615	38.451	
11	56) L)	辉锑矿	1.363	24.879	21, 301	52.477	18.253	15.628	38, 486	
12	- b 5	重晶石	1.349	20. 230	21.127	52, 292	18.703	15.361	38.764	1
13	- 67	自研岩矿石	1.294	27.480	0°, 470	50, 756	21. 236	15.819	39-224	ł
14	-68	石英	1.350	25.462	21.080	52.108	18.861	15.615	38.599	矿前
15	- 73	石毛	1.306	27.056	20, 502	51, 086	20.717	15, 737	39, 116	矿期
16	– 78 ₁	黄铁矿	1.335	25.312	21, 258	52.076	18,680	15.689	38.432	
17	-82	石英	1.262	29, 960	29, 122	48.636	23,740	15.945	38.5 3 C	矿期
18	- 85	框锑矿	1.352	25. 346	21.158	53, 146	15, 747	15.649	38. 570	1
19	-88	辉铸矿	1.346	24, 887	21, 313	52.436	! 18. 246	15.625	38.443	
20	— 56	重晶石	1.359	24.934	21.194	52, 513	18.347	15.597	38.641	
21	91	石美	1.351	24. 920	21.155	52.574	18.446	15-659	38.915	亡前
20	-90	辉洁矿	1.363	24-732	11.567	52.339	18.145	15.803	38.400	
23	95	重唱石	l 1.353	25 266	21.189	52.172	18. 659	15.061	3B. 560	
24	- 98	石美	1.333	27. 980	20.927	51.760	19.490	15,699	38.830	矿朝
25	- 98(1)	硅岩矿石	1.304	27-832	20, 585	50, 279	21.344	15,786	38.558	1
26	-105	重晶石	1.341	25.847	20. 925	51.845	19.274	15,606	3 8. 691	
27	-107	石美	J. 371	24.691	21.427	52.511	18, 009	15,629	38.301	矿前
28	-108	玢岩矿石	1. 337	25-550	20, 838	52. 275	19,110	15.550	34. 099	1
29	-110	动岩矿石	1.301	26, 999	20, 696	51.004	20.752	15.908	39.204	1
30	-111	砲岩	1.057	39.449	16. 033	41.443	36.697	16.775	38.552	ł
31	T-52	下美	1.355	25.757	21.139	51, 931	18. 875	J5.601	38.325	矿期
32	-56	辉锑矿	1.370	24.751	21.378	52. 502	18.066	15.604	38. 323	
33	-68	石英	1.336	27.437	20.934	50.293	20. 537	15.669	37.644	矿期

由核工业北京地质研究院四室分析。

5.2 金矿石和矿石矿物两者的铅同位素组 成与其岩石的基本相似,表明矿石的铅不是 来自岩浆岩而是来自含矿地层。但矿石铅同 位素的变化范围要大于岩石,又表明其中放 射性成因铅已经过了改造,其分布很不均匀。 5.3 全部样品的²⁰⁷ Pb/²⁰⁴ Pb、²⁰⁵ Pb/²⁰⁴ Pb 值 都基本相近,而²⁰⁵ Pb/²⁰⁴ Pb 值的变化则较大, 反映出本区在地质作用过程中由于有铀的带 入,使金矿石具有高铀低钍的围岩特性。成矿 期较早世代石英和重晶石的³⁰⁶ Pb/³³⁴ Pb 值 (18.5%~19.0%)要低于较晚世代同种矿物 的(21.5%~23.0%);矿前石英的³⁰⁶ Pb 要低

于矿期石英的,均反映出金成矿过程中有放射性成因铅的叠加,成矿改造作用使矿石和 矿石矿物中富集丁放射成因铅(^{3m}Pb)。

表 5、金矿床的铅同位素特征值

矿 物	咩 靫	²º4Pb(;÷)	206Pb(";;)	²⁰⁷ Pb(² ;)		200 Pb *204 Pb	- 7Pt/-7-Pb	20° PD 204 PD
글 뷛	10	1.275	29.164	20. 338	44 467	01.952	17.520	38.87f
石英	10 -	1.324	26. F29	20.877	51, 182	20, 113	15,775	ə8, 657
辉钨矿	6	1.359	24 914	21, 536	52.338	15, 533	15.669	3A. 149
重鬍石	ñ	1.351	25.155	21.074	53 407	18, 629	15.146	34.507
黄铁矿	l	1.355	25. 312	21, 258	52,076	15.680	15.659	35. 432
÷ tj	33	1.328	26.255	21.376	54., 504	19,741	15,940	37. 564

5.4 在⁵⁰⁷ Pb/²⁰⁴ Pb—²⁰⁶ Pb/²⁰⁴ Pb 图上,所有 样品铅同位素的投点表现为一条斜率 R 为 0.102,相关系数为 0.978 的直线。可以利用 铅模式年龄计算公式估算本区金成矿的上限 年龄(成矿开始的年龄 t)和下限年龄(成矿 结束的年龄 t₂)。

在假定成矿结束时的年龄为0时,计算 出的成矿上限年龄(t_i)为160Ma。我们认为, 金成矿后继续保持开放环境,矿后热液期及 表生期仍有异常铅带入,成矿结束时年龄也 不等于0:因此,成矿的上限年龄不能代表金 成矿的年龄,而只是反映了本区与金伴生的 铀矿化的年龄。这一等时线年龄与用矿石全 岩和沥青铀矿U-Pb 法测定本区铀矿床主 成矿期的年龄值(160Ma~80Ma)大体一致。 利用金矿床中与金密切共生的辉锑矿的同位 素计算的模式年龄为40Ma,可以代表金成 矿年龄的最小值。这一模式年龄下限值与我 们对含金石英¹⁸Ar/⁴⁹Ar 方法测定的金成矿 年龄值(49.5Ma)基本吻合。

6 残司位素丝成

对本区几件从含矿岩石中提取的碳沥青 (经热液改造的碳)进行了同位素分析, δ^{1,3}C 值在-10.23‰~-30.46‰(PDB)之间, 平 均值为-22.19‰。这一结果表明, 本区含矿 岩石的碳沥青 δ¹¹C 与岩浆成因的碳酸岩和 金刚石的 δ¹¹C(-3‰~-7‰)完全不同,而 与海相沉积岩中有机质的 δ¹¹C(-10‰~-30‰)十分一致,证实本区参与成矿期活动的 有机质主要来源于容矿围岩¹¹。

对本区含碳硅岩、板岩的矿石和岩石及 其提取物干酪根进行了δ¹³C‰(PDB)测定, 结果矿石和相应岩石的δ¹C 基本一致,其变 化范围在-23.18%。~-27.38%。之间;二者 干酪根δ²C 的变化更小(-27.36‰)~-28. 92‰),表明矿石中有机质来源于围岩。

7 硅同位素组成

从收集到的本区 21 件硅同位素分析结 果³⁺⁵ 看,热液期含金石英脉的 δ^{20} Si 在一0. 2%。~一0.1%。之间,分布相对集中:赋矿围岩 硅岩的 δ^{20} Si 在 0. 4%。~1. 3%。之间,具有较 高的硅同位素组成。本区产于侏罗系陆相火 山岩和煤系地层中玛瑙和硅化木的 δ^{20} Si 相 对更低,为一10%。~一0. 7%。不同时期以不 同方式形成的硅,其同位素组成有其本身的 特征值。硅同位素分馏程度的不同有可能预 示着不同的硅质来源,这有待进一步研究。

8 根据岩石和矿物同位素组成对本区 金成矿作用的主要认识

41

8.1 同一元素化合物的不同同位素组成,记录了它们形成物理化学环境的差异和在地球 化学演化过程中所经历的同位素分馏现象。 矿石和单矿物中元素的同位素组成特征,可 以为解决矿质来源和成矿提供可靠的、比较 直接的证据。

8.2 本区岩石的同位素组成和相应矿石、矿物的同位素组成,既有区别,又有相互的联系。硫,氧,铅、碳同位素组成表明,本区金成矿的主要物质来源于含矿围岩。

8.3 含金石英包裹体同位素组成表明,金成 矿有关的介质是经深循环后被加热的大气降 水,而非岩浆期后热液。

8.4 利用金矿石和矿物的铅同位素组成可以估算金成矿的年龄。根据与金共生的辉锑

矿铅同位素组成计算的年龄(40Ma)与通过 含金石英³⁸Ar/⁴¹¹Ar 法测定的金成矿年龄 (49.5Ma)基本吻台,表明本区金的成岩与成 矿之间存在一个很大的时差,金的成矿作用 发生很晚,在新生代新老第三纪的交替时期。

参考文献

- 1 周德安,黄金,1993(10)。
- 2 周德安,黄会地质科技,1994(2)。
- 3 突世伟 会矿庆地质及找矿方法, 四川科技出版社, 1989.
- 4 毛裕年等, 西秦岭南亚带祸硅尼岩型会矿成矿规律与找 矿远号(国家黄金管理局重当黄金科技攻关项目研究技 告),1992.
- 5 对零军, 全拉尔玛萨提金矿夫的地质环境及成矿机制 (成都地质学院硕士论文),1991.

Isotope Geochemistry of Southern Asia Zone Wollastonite Mudstone-type Au Deposit in Western Qinling

Zhu De'an

in westurn Quiling, southern Asia zone wollastonite mudstone-type Au deposit is new and prospective deposit type discovered in second years in China. The geological characteristics of the deposit were outlined. A systematic discussion of $S_*O_*Pb_*C_*$ Si isotopes of numeral scores and tooks and the constitution features of mineral inclusion isotopes have been made. Recognitions about main metallogenic sources-medium nature-metallogenic chronology and metallogeny are presented.

Key words: wolfastonite mudstone-type Au depositalsotope constitution metallogenesis

42