根据水系沉积物测量结果预测异常区矿化规模

赵玉涛

(地矿部区域重力调查方法技术中心)

本文设计推导了一个根据水系沉积物测量结果,预测 异常区矿化 规模的公式。该公式将物性、地质、地球化学资料有机地结合在一起,可为异常评价提供一定依据。实例计算表明,该公式简便可行。

关键词: 水系沉积物测量; 原生晕; 剩余金属量; 异常定量评价

水系沉积物测量是一种快速而有效的地球化学找矿方法,在我国得到了广泛应用。目前,内地及沿海地区的1/20万化探扫面工作即将结束,部分省区已开始1/5万化探扫面工作即将结束,部分省区已开始1/5万化探挡查,所采用的方法绝大部分是水系沉积物测量。通过工作虽然获得了大量的异常,但对异常的定量评价仍不充分。评价的主要依据是异常强度、规模等,这显然是不够的。下面我们提出一个定量估计水系沉积物异常金属量的公式,试图对异常评价上有一点改进。

计算公式的设计推导

我们的出发点是计算异常区的剩余金属量。剩余金属是指高于异常下限以上的金属量,认为这部分金属量是能够富集成矿的最¹⁷大金属量。

设原生晕异常面积为 S_0 ,水系沉积物侧量元素异常面积为 S_x ,异常中某元素的平均含量为 $C_x(%)$,异常下限为 $C_\phi(%)$,异常区岩石密度为 $d(t/km^3)$,预测深度H(km),那么,异常区H深度范围内原生晕中某元素的剩余金属量 Q_x ,可由下式求得:

$$Q_z = S_0 \cdot H \cdot d(C_z - C_\phi) \qquad (1)$$

因水系沉积物元素在迁移过程中发生了 富集或贫化,其含量并不能代表该元素在岩 石中的含量,须经过校正恢复之后,方可使 用。校正系数可由下式求得:

该系数与经常使 用 的富 集系数 互为倒数,即

$$K_{\bullet} = \frac{1}{K_{I}}$$

$$(K_f = \frac{\overline{\text{元素在水系沉积物中的含量}}}{\overline{\text{元素在岩石中的含量}}})$$

(3)

其次,水系沉积物迁移较远,异常面积 比原生晕异常面积要大得多。为切合实际, 面积也要适当予以缩小。设水系沉积物异常 面积与原生晕异常面积之比 为 γ , $\gamma = S_{\rm x}/S_{\rm a}$, 即有

$$S_0 = S_x/\gamma$$
 (4)
将 (2)、(4) 并入 (1) 式有
$$Q_x = \frac{1}{\gamma} S_x \cdot H \cdot d \cdot (C_x - C_\phi) K_x$$
 (5)

在不同景观区, 7 值是不同的, 元素迁

46

移距离越大, γ 值越大。在同一地球化学景观区,可以把元素的迁移能力看作 近似相等。那么,在研究区内已知矿床(点)上,根据岩石测量和水系沉积物测量结果就可求得 γ 值。若是 n 个矿床上都有资料, γ 取 均值更有代表性,这时 $\gamma = \sum_i \gamma_i / n$ 。如,某矿床上原生晕综合异常面积 为2 km²,水系沉积物综合异常面积为16 km²,即得 γ = 16/2 = 8。若资料充分,对每个元素求一个 γ 值,将更加符合实际。 γ 值可以在所研究的范围里通用。

还有一个重要问题,即预测深度。若对不同的异常采用一个预定的深度进行定量预测,显然不符合实际。苏联进行类似预测时,建议了一些参考深度,如对金、银、钨、钴、铍矿床最好取100m,对铜、铅、钴、镍、钼矿床最好取小于200m0。如果按既定深度计算,就是把异常看成了厚度相同而面积不同的板状体。就理而论,厚度相同而面积不同的板状体。就理而论,异常面积大的,预测深度应因异常面积大的,预测深度应因异常。假如视原生量异常形态近似看作圆,坐径 $R=\sqrt{3/4\pi}=0.56(km)$ ($\gamma=$ 量异常半径 $R=\sqrt{4/4\pi}=0.56(km)$

4)。 若水系沉积物异常面 积为10km², ν= 4, 原生晕异常半径为0.89km。 如果对这两个异常分别按100m及200m的深度进行 预测还是比较合适的。比较看出,这样的预测深度大致是 半径的1/5。 据此,可以采用原生晕异常半径的1/5作为预测深度,其 与水系沉积物异常面积具有如下关系:

$$H = \frac{1}{5}R = \frac{1}{5}\sqrt{\frac{S_0}{\pi}} = \frac{1}{5}\sqrt{\frac{S_x}{\gamma_{\pi}}}$$
 (6)

将(6)式代入(5)式有

$$Q_{r} = \frac{1}{5\gamma} S_{r} \cdot \sqrt{\frac{S_{r}}{\gamma \pi}}$$

$$\times (C_x - C_{\psi}) \cdot d \cdot K_s \qquad (7)$$

由于矿床剥蚀深度不同,根据异常所计算的剩余金属量会有较大的出入。在这里,引用 $C \cdot B \cdot K$ 格里戈良的剝蚀深度指数 予 以修正。 $k = \frac{Pb \cdot Zn \cdot Ag}{Cu \cdot Bi \cdot Co}$ 。 异常区的 k 值,我

们可以利用水系沉积物 测量结 果求 得。当然,每个元素的含量也须用K,恢复 至岩石含量水平,这样才能估计评价原生异常的剥蚀程度。如果剥蚀越深、 k 值越小,校正后所计算的金属量也会减少,剥蚀越浅, k 值越大,校正后金属量也就增大,说明深部有多的潜藏矿化。我们在某研究区内,根据 k 值确定了如下剥蚀校正系数 K_R 。若资料翔实

某研究区内剥蚀深度指数与剥蚀校正系数对应表

表 1

$k = -\frac{\text{Pb} \cdot Z \cdot Ag}{\text{Cu} \cdot B} \cdot \text{Co}$	>1000	50~1000	50~10	<10	
K _R	1.5	1	0.5	0.1	

时,此级别还可多划分几个。

这样,公式 (7) 变为:

$$Q_x = \frac{1}{5\gamma} S_x \sqrt{\frac{S_x}{\gamma \pi}}$$

 $\times (C_x - C_\phi) \cdot d \cdot K_x \cdot K_x$ (8) 此公式最适于热液硫化物矿床预测。

实 例

根据公式 (8), 在某研究区内对100余 个异常进行了定量预测。确定的 ? 值为4, K_n

● 地质矿产部情报研究所编译,苏联固体矿产化探规范,1985年。

47

某研究区水系沉积物异常区金属量计算结果与实际情况对比

异常	d (t/km²)	R (m)	元 煮	K.	S _z (km ²)	C₂ (ppm)	C _Ψ (ppm)	剩余金属量 (t)	储 量 (t)	矿床规模	工作程度
10°		Zn	1.2	12	210	120	159845	>500000	(多金属)	1	
]		Sn	0.65	20	41	8	64549		}		
<u> </u>		Ag	2.0	8	0.25	0.2	94			<u> </u>	
2	2.62 ×	894	Pb	1.69	48	130	40	1884223	>500000	大 型	钻 探
	× 10°		Zn	1.0	36	1257	120	9082801	>500000	(多金属)	
			Sn	0.81	52	25.8	8	199842			
	<u> </u>		Ag	1.72	52	0.65	0.2	10728		<u> </u>	
3	2.67 ×	87.3	Pb	1.33	4	86.6	40	18677	<200000	中小型	钻 探
	10°		Zn	1.2	16	170	120	144649		(铅锌)	
			Cd	4.52	16	0.225	0.12	1144			
			Ag	2.0	12	0.246	0.2	114			
4	2.63×	21.4	Ag	2	28	0.822	0.2	3419	<200	小 型	初步钻探
	10°		Pb	1.33	24	106	40	191476	<10000	(银铅锌)	F
			Zn	1.2	32	387	120	107605	<100000		
			Sn	0.65	32	75.2	8	146693			6
5	2.63×	860	Pb	1.33	16	94	40	179308	J	5. 草	异常检查
	109		Zn	1.20	24	210	120	471163		(多金属)	(新发现)
			Sn	0.65	16	34	8	39052			
			Ag	2.0	28	0.836	10.2	6993			
6	2.63 ×	2285	Pb	1.08	8	472	40	583108		矿点	普査
	10°		Zn	1.05	16	504	120	1425304		(多金属)	(新发现)
	1 1		Sn	0.76	8	26	8	17097			l
		_\\\ \	Ag	1.74	12	0.981	0.2	3120			
7	2.57×	341	Po	1.14	12	127	40	149487		矿点	普査
	109		Zn	1.17	20	473	120	1339411			
	1		Sn	0.98	16	59.5	8	117117			
			Ag	1.65	12	0.41	0.2	517			<u> </u>
8	2.61×	18.5	Cu	0.83	12	50	30	12705		铜矿点	普 查
	10°		Zn	1.05	1 2	203	120	66699		1	
	1		Pb	1.08	4	44	40	637			
			Ag	0.58	12	0.339	0.2	61.7			
9	2.59 ×	40.6	Zn	0.98	28	161	1 20	108765		矿点	普査
	10°		Pb	1.32	20	67	40	58241		(多金属)	!
]]		w	0.94	20	4.7	3	2612			
			Ag	1.67	24	0.299	0.2	355			
10	2.61 ×	26.2	Pb	1.12	8	73	40	15398		矿点	普在
	109	20.2	Zn	1.12	8	211	120	41702		w /5%	ы <u>т</u>
			Ag	1.67	12	0.36	0.2	136			
			1								
	11		W	0.91	4	3.6	3	81			

异常	d (t/km³)	R (m)	元素	К,	S _x (km ²)	C _r (ppm)	Cφ (ppm)	剩余金属量 (t)	储 量 (t)	矿床规模	工作程度
11	2.61 ×	5.1	Pb	1.15	4	65	40	847		矿点	普查
	10°		Zn	1.1	16	139	120	4925			
			Cu	0.84	20	40	30	2767			
			Au	1.72	4	0.002	0.0015	0.025			
12	2.55 ×	101.8	Pb	1.06	12	42	40	3170		未见矿化	异常检查
	10 °		Zn	1.16	20	132	120	492711			
			Cd	1.42	20	0.51	0.12	1782			
			U	1.30	12	4.4	4	778			
13	2.57×	20	Pb	1.14	8	60	40	4677		未见矿化	异常检查
	109		Sn	0.93	4	23.5	8	2091			
			w	0.88	12	4.0	3	663		ļ	
			Mo	1.36	8	2.7	2	391			
14	2.61×		Pb	1.32	8	56	40	8799		未见矿化	异常检查
	10°		Zn	1.18	8	136	120	7866		1	
			Sn	0.77	12	15.8	8	4597		[]	
			w	0.9	8	3.1	3	37.5			

使用了表 1 的值。结果比较理想,指出了一定的远景区。表 2 是14个异常的计算结果与实际情况对比表。

从表 2 可以看出,1~4号异常的剩余金属量比较大,均为已知广床引起,计算的量和实际矿成规模大致相符,没有超过一个数量级。5、6异常的剩余金属量也比较大,异常检查时可见到矿化,7号异常处原有一矿点。由此看来,5、6、7号异常有一定的发展远景,希望继续工作。8、9、10、11号异常,虽为已知矿点引起,但 R值较小,计算的剩余金属量也不大,可能已剥蚀至尾部,不必进行大量工作。12、13、14 异常所计算的剩余金属量不大,经检查也未见任何矿化,没有找矿远景。

因此,筛选、评价异常时,可以用矿化规模衡量之,当计算的剩余金属量大于同矿种小型矿床规模时,该异常就有找矿希望。 否则,不必投入大量工作。

结 语

为根据水系沉积物测量结果预测异常区

当然,此公式的设计仅是初步尝试,其中肯定有不少缺点,需要逐步修改完善,望同仁提出批评意见。本文承蒙李清高级工程师审阅,在此深表谢意。

多考文献

[1] [苏] 斯梅斯洛夫 A. A. 等,《地 球化学预测与找矿》, 地质出版社, 1985年。