冷水银铅锌矿田中铁锰矿床地质特征及成因初探

罗治癖 杨恩湛

(江西省912地质大队)

冷水矿田是近年探明的一个特大型银铅锌矿田, 属斑岩 型、脉带 型和火山喷气一沉积叠加改造型"三位一体"的多成因矿床。矿田中 的铁锰矿床成因有争议。本文以铁锰矿床地质特征研究为基础,结合 含矿花岗斑岩侵入的影响,认为它是含银铅锌的火山喷气一沉积 叠加 改造型铁锰矿床。

关键词:含银铅锌的铁锰矿床;上侏罗统,特征与成因

矿田地质概况

本矿田位于中国东部中生代陆相火山杂 岩带的西侧, 古罗岭火山盆地的西缘。出露 地层有·

中上震旦统:由各类片岩夹片麻岩、混 合花岗岩、花岗伟晶岩组成,广见于矿田西 北部。

上侏罗统: 为一套陆相火山碎屑岩, 夹 酸性熔岩、火山沉积岩类。按喷发旋回和韵 律分上下两组。下组打鼓顶组, 为厚层火山 碎屑岩, 隐伏于矿田深部, 顶部有火山角砾 岩及少量安山岩; 上组鹅湖岭组, 是本区出 露最主要的地层,该组下段以火山碎屑岩为 主,中段为流纹岩,上段是熔结凝灰岩。本 区火山岩地层走向北东, 倾向南东, 倾角平 缓。矿田外围有中石炭统贵龙灰岩零星分布。

区内构造以断裂为主, 走向北东。其中 以纵贯矿田的F,断裂最重要,属导岩控矿逆 掩断层, 震旦系变质岩逆冲于上侏罗统火山 岩之上。

区内岩浆岩属于超浅成次火山岩。其中 沿F。断裂侵入于鹅湖岭组下段火山碎屑岩中 的花岗斑岩是斑岩型银铅锌 矿床的"容矿 岩"。该岩体呈喇叭状 小岩 株, 出露面积 0.36km²(图1)。 岩体走向 北 东, 倾向与岩

层相反。此外,区内还有流纹斑岩、石英正 长熟岩等。

矿田由5个矿床组成,铁锰矿层为矿田 西南深部的下鲍铁锰矿床。

铁锰矿床地质特征

下鲍铁锰矿床位于矿田西南部,120~ 140勘探线之间(见图1)。矿体呈层状、似 层状隐伏于上侏罗统打鼓顶组上部火山碎屑 岩中。含矿岩系自上而下为: 上部火山碎屑 岩一硅质岩一铁锰矿层一碳酸盐岩一下部火 山碎屑岩 (图2), 厚度5~6m至50~60m, 平均厚30㎡。含矿岩系与火山岩产状一致。 矿层与含矿岩系整合接触。矿层中有火山碎 屑(沉积) 岩和白云质结晶灰岩薄夹层,并 见层理和条带状构造等沉积特征。

矿体赋存于-200m 标 高, 以 单 层 为 主, 走向北东, 倾向南 东, 倾 角15~25°, 厚数至数十米,最大假厚度40m(图3)。可 分为浅部磁铁矿体和深部菱铁锰矿体两类, 两者底板相距100m(±), 其间为渐变过渡。

矿石矿物主要有铁锰碳酸盐类(菱铁锰 矿)、碳酸锌及铁的氧化物(以磁铁矿为主, 赤铁矿少量), 脉石矿物有石英、方 解 石、 白云石, 偶见碧玉 (据南 京 大 学 地质系) 等。矿石以块状为主,局部见条带状、隐角

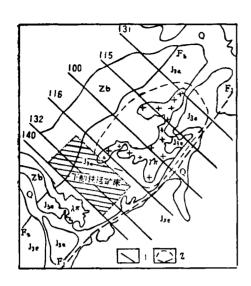


图 1 冷水矿田地质略图

Q一第四系; J_{se}—上侏罗统翰 湖 岭 组; Z_b—展 且系, γπ—含矿花岗斑岩; λπ-流纹斑岩; F— 断裂; 1—勒契线; 2—含矿岩系界线

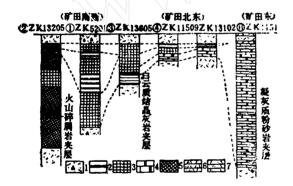


图 2 含矿岩系岩石组合及层序对比柱状图

1一晶屑凝灰岩 (局部含角砾), 2一硅质岩, 3一菱铁锰矿层,4一白云质结晶灰岩,5一磁铁矿层,6一凝灰质砂岩,7一凝灰质粉砂岩

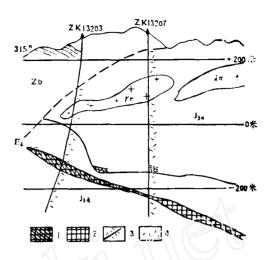


图 3 132動探线地质创新略图

砾状构造;结构以自形晶粒状为主,**鲕状次**之。

矿石中主要有益组份TFe、Mn、Zn、TFe+Mn都已达到工业要求,含量稳定(表1)。但不同类型矿石的TFe/Mn比值有明显区别。此外,矿石具有P、Ge高,Ti、S低的特点, V_2O_5 <<0.01%。在菱铁锰矿石中,TFe、Mn、Zn呈同步消长关系,TFe、Mn相关系数为+0.86。

铁锰矿床成因

目前,对本矿床的成因有两种认识:一 是认为火山热液充填交代型,另一是火山喷

下鲍铁锰矿床矿石化学成分(%)

表 1

矿石类型 (矿体)	见矿孔号	见矿孔深 (m)	矿体厚度 (m)	顶板 标高 (m)	TFe	Mn	Zn	Pb	Ag (g/t)	TFe+Mn	TFe/ Mn	Zn/Pb	s
铁铅锌银矿石 (磁铁矿矿体)	ZK13203 ZK13209 ZK12403	358~391 290~317 378~400	27.16	-66	31.92 30.75 30.93	4.33 2.75 3.45		2.71 1.53 2.38	154.31	36.25 23.50 34.38	7.37 11.18 8.97	1.03 1.12 1.30	1.80
铁锰银锌矿石 (菱铁锰矿体)	ZK5201 ZK13205 ZK13605	504~530 512~526 545~557	13.61	- 268	13.12	17.85 21.96 21.73	0.55	0.16 0.22 0.29	43.02	32.45 35.08 37.80	0.82 0.60 0.74	8.50 2.50 2.72	0.48

气一沉积型。笔者认为它是火山喷气一沉积 叠加改造型矿床,其依据是:

①矿体呈层状、似层状整合于含矿岩系 中,并与火山岩地层产状完全吻合,而与含 矿花岗斑岩倾向相反。

含矿岩系层位稳定、层序清晰。矿体中 夹有火山碎屑 (沉积) 岩、白云质结晶灰岩 薄层和碧玉; 原生晕异常元素组合亦显示沉 积特征●。

- ②矿石具条带状、层理状构造和鲕状结 构。
- ③矿体未见同期围岩蚀变和原生矿物交 代结构。
- ④矿石各类原生矿物未见气、液包裹 体,菱铁锰矿氧同位 素δ¹⁸O为-16.53‰[®], 显示大气降水参与了成矿作用。
- (5)含矿花岗斑岩与铁锰矿层之间呈侵入 接触,产状倾向相反,并破坏矿体。含矿岩 系(包括铁锰矿层)围绕岩体呈半环状一环状 展布。

样	号	Al ₂ O ₃	TiO:	FeO	MgO	CaO	MnO
F013		0.00	0.00	92.93	0.03	0.02	0.55
F014		0.10	0.07	92.94	0.00	0.04	0.39
$\mathbf{L}_{\mathbf{l}}$		0.02	0.00	90.52	0.02	0.04	0.43
F015		0.03	0.08	92.01	0.00	0.02	0.10
F015核*		0.43	0.03	58.40	0.19	0.67	0.25

数据由南京大学地质系提供,全部样品 采自冷水矿田, *样品为菱锰铁矿核。

- ⑥经电子探针分析 (表2), 鲕状磁铁矿 中心核为菱铁锰矿, 表明磁铁矿是先形成的 菱铁锰矿经热力变质作用而形成。
- (7) 矿田内的白云质结晶灰岩与矿田外围 出露的中石炭烷黄龙灰岩特征明显不同(表 3)。表明它不是黄龙灰岩的捕虏体。

铁锰矿床的叠加改造作用

区内铁锰矿床的叠加改造作用是受花岗 斑岩侵入作用的结果。

①花岗斑岩侵入作用所带来的含矿热液

区内两种灰岩的特征对比

表 3

一 岩石(地层) 名 称	产出时代	岩石颜色	围岩	分析样数	CaO (%)	MgO (%)	CaO + MgO (%)	CaO MgO
白云质结晶灰岩	中侏罗统	白 色	火山碎屑 (沉积)岩	6	最高30.15 平均23.01	22.09 15.82	38.83 46.28	1.450
黄龙灰岩●	中石炭统	浅紫色、浅 紫灰色	底板为梓 山组砂砾岩	10	最高53.21 平均45.23	6.92 1.05	46.28	43.08

^{*}引自冷水坑桐源石灰岩普查报告。

对铁锰矿体的充填交代作用,导致铁锰矿石 中叠加了辉银矿、方铅矿、黄铁矿等硫化矿 物,提高了铁锰矿石的工业价值。尤其是银 的加入, 使铁锰矿石类型可划分为: 铁铅锌 银矿石(相当于磁铁矿矿石)和铁锰银锌矿 石(相当于菱铁锰矿矿石)。叠加矿化作用 强度随远离花岗斑岩体明显减弱。

②铁锰矿体围岩出现程度不等的绿泥石 化、硅化和碳酸盐化等蚀变。蚀变作用与后 期构造破碎关系密切,呈线型分布。

③花岗斑岩的热力作用,常导致与铁锰 矿体邻近的菱铁锰矿转变为磁铁矿。这种转 变距岩体越近越发育。

总之,冷水矿田中的铁锰矿体,经历了 火山喷气一沉积和含矿花岗斑岩侵入作用的 改造两个阶段,矿床应属火山喷气--沉积叠 加改造型成因。

11

[●] 江西912地质大队、长春地质学院,冷水坑 斑岩 型铅锌矿区地球化学特征,1982年。

[●] 由南京地质矿产研究所提供。