江西含钨沉积建造与层控钨矿

许 静

(江西地质科学研究所)

层控钨矿的形成穿越沉积、变质作用两个阶段,又受岩浆作用的 明显影响,属多元成矿的热液矿床。含钨沉积建造是矿源层,它是钨 在地壳特定区域缝承性演化的产物,其中钨具有分布不均匀、多层性, 多岩性组合和穿时性等特点。

关键词: 江西,钨矿,矿源层,层控

层控钨矿系指主要由 沉积(含火山沉积)形成的含钨沉积建造,经后期地质营力引起的地下热液作用,导致矿质活化并随之 顺层或沿构造裂隙迁移,最后在合适层位的 岩性中富集而成的工业钨矿体。这是一类有潜在远景的钨矿新类型[1],其形成 经 历了 沉积作用、变质作用两个阶段,往往又受岩浆作用不同程度的影响,因而属多元成矿的 范畴。文中引用了"江西钨矿地质特征 及成矿规律"专题的调研成果及地质、冶金 各队资料,插图由黄莲珍清绘,在此一并致谢。

钨的矿源层——含钨沉积建造

早在1964年谢家荣就提出:"与花岗岩有关的钨锡矿床矿质可能来自 周 围的岩层",1965年莫柱孙更明确提出了钨 的 矿 源 层概念,认为"华南钨矿成矿物质来自 围 岩,特别是加里东地槽的沉积物"。近 年 来,我们认为这就是含钨沉积建造,是华南地壳继承性演化的产物,其钨的含量普遍高于地壳钨的丰度。它既是层控钨矿的成矿基础,又是与钨有关的成矿花岗岩的源岩和矿源。现已查明,含钨沉积建造具有多层位和多岩性组合的特点,其中钨的含量高而不均匀、其特点如下:

1. 含钨沉积建造具继承性、不均匀性 和穿时性的特点 在华南这一钨的构造地球 化学场中,钨作为一个特殊的元素,继承性地沿着外生、内生途径由分散一集中一再分散一再集中,最后在侏罗纪(燕山期)达到顶峰,形成区内众多的钨矿床。内生途径,除了深源火山喷溢一沉积或基性一超基性岩带来的钨以外,主要指与花岗质岩浆有关的钨化。现有资料 6 2 表明,有关岩浆本身就是壳层(在江西主要是元古代、早古生代两个构造层)重熔花岗岩化的产物,因而仍属钨在地壳中的演化范畴,这方面已有较多的论述。而钨在地壳中演化的外生途径,以往研究不多,近年来则广为注目(表1)。

江西大致以铅山一萍乡深断裂为界,巨厚的地槽型浅海相(类)复理石建造(双桥山群),普遍含有火山熔岩、火山沉积岩夹层,具有较高的钨含量(10.05ppm)。钨的来源以火山源为主;之后形成的震旦一寒武纪地台型沉积也继承地含钨偏高,如赣东北震旦系含钨(ppm)6.47、寒武系8.886,赣西北震旦系7.72(其中陡山花组为9.80)、

[●] 李亿斗等:与脉钨矿床有关花 岗 岩 的 起源和<u>资</u>化,1983年。

❷ 袁忠信等,江西灵山岩体稀土元素地球化学及岩石成因探讨,1983年。

[●] 据冶金部南岭钨矿专题组(1981)资料,未注明 出处的数据系本专题(1984)成果,由广西地质中心实验 室磁熔催化极谱法测得。

	發南	华南	日本	髓南	华南	华南	华南	江西	勒 南	赣南	赣北	赣南
地层	张纪超等 (1979)	冶金部	『南岭钨矿 (1981)	专题组	刘英俊 (1982)	苗树屏等 (1981)	周圣生 (1981)	颜美钟 (1981)			江西地科所三室 (1984)	
Pt		9.13	13.14		11.43	9~14	9~14沃溪 可达100	14			10.0	
z	50	10.67	□	11.56	10.67		16~100 一般50	6.71	19.3	6.7	7.7	6.3
€	28	15.46	8.88	17.45	15.46	€ ₃ 30~40	€ ₃ 30~40	6.11	€2-355.8 €1 18.5	6.1	2.3	5.1
0	5	9.02		9.14	9.02						1	
D	8	11.52		14.00	11.52	D ₂ 15 D ₁ 17~19	$\begin{array}{c c} \mathbf{D_{1}} & 7 \sim 14 \\ \mathbf{D_{2}} & 7 \sim 15 \\ \mathbf{D_{1}} & 17 \sim 19 \end{array}$	3.50	D ₃ 17.4 D ₂ 13.2	3.5		3.0
C.	10	9.50		23.02	9.50	C₁ 20~33	C₁ 20~33	6.02	C ₂ -, 0 C ₁ 13.6	6.0		3.3
Р		4.97		11.72	4.97				P ₂ 5.2 P ₁ 15.7			
T		6.36			6.36							
平均值	17	10.60		7	9.53			İ	20.7	5.43	8.7	4.1
备注	1052个 岩石光谱 半定量成 果统计	质研究所实验室以SiO ₂ 、炭					据苗树屏 等(1981) 略加补充			岩样由地 质部测试 所定量分	208个岩林 地质中心 熔催化极 分析, 每	实验室碱 谱法定量

寒武系2.28 (其中王音铺组为6.80)。 南部 属加里东褶皱带,该区上元古宙至早古生代 仍处于地槽环境, 沉积了一套类复理石建 造,钨含量普遍较高(图1),如上寒武统为 33.87ppm (冶金部南岭钨矿专题组,1981), 它们经加里东运动始褶皱问返, 有的经再造 形成层控钨矿床(如 焦 里[6]、岿 美山●、 乌石坑[2]。然后全省上升为陆, 遭受剥蚀, 至中泥盆世才自西南而东北开始接受沉积, 此后钨的来源就既有火山源、又有上述地层 中含钨沉积建造的剥蚀、再沉积陆源钨的补 给。

含钨沉积建造中钨的分布是不均匀的, 图1反映了纵向上的变化, 甚至在 有 限的范 围内, 同一层位变化也明显, 如于都同是石 炭系梓山组,各剖面含钨就有明显的差异,

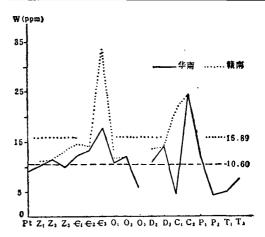


图 1 华南、赣南各时代地层含钨曲线图 (据冶金部南岭专题组,1981)

[●]李崇佑、许静: 钨矿床成因类型, 1979年。

分别为(ppm)8.04⁽³⁾、20~52⁽²⁾、65⁽⁴⁾、 72.93(5)以及18.51(6)、3.97等。含钨沉积 建造中钨分布的不均匀性与沉积阶段的物质 供给及沉积条件密切相关,已知层控钨矿床 大多出现在含钨丰度不均匀背景上的高含量 层位或地段。含钨沉积建造中钨的丰度受不 同来源制约,但无论是火山源、陆源或混合源 都与最后沉积作用有关,并往往伴随区域性 海侵早期沉积出现高含量。如江西石炭纪沉 积的含钨建造多与海侵早期的沉积(夹火山 沉积) 有关,海侵由西南向东北扩侵,造成 贡水流域该层含钨建造形成于早石炭世岩关 期,向北一北北东至宁都青塘、东乡枫林一 带则出现在早石炭世晚期至晚 石 炭 世 早期

(即大塘期末—黄龙期初),到赣东 北 地区 永平、朱溪一带缺失早石炭世沉积, 含钨沉 积建造则见于晚石炭世早—中期形成的黄龙 组(或"藕塘底群")。尽管层位抬升、沉积 时代变新, 但有关沉积物大多始自河湖相碎 屑沉积, 且陆屑来源均与邻近的台隆或隆起 有关, 表明它们是随海西—印支期地块隆拗 差异运动,海水逐渐向北浸漫而产生的。从 而显示一定地区的时控性和自南而北的穿时 性。纵观上述,江西含钨沉积建造大多处于 各时代早期海侵层序的中下部(或海退层序 的中上部),表明经历一个时期(或长或 短) 上升剥蚀, 在再次海侵的 初期 伴 随陆 屑、钨矿质呈矿物碎屑、离子吸附大量迁入

江西若干时代地层成矿元素含量 (ppm) 一览表*

表 2

地 层	样品数(个)	w	Şn	Bi	Мо	Cu	Ве	分区	
Pt	103	10.1	5.1	4.5	2.6	38.5	2.8		
Z_1d	1 1	4.3	0.5	0.4	2.1	43.3	3.0	 	
$Z_{i}n$	4	4.4	1.2	1.6	1.8	15.4	2.7		
Z_2d	18	9.8	4.1	2.1	3.1	45.6	2.8		
Z₂dn	3	8.0	1.3	1.2	0.9	40.9	1.1		
e, w	3	6.8	1.9	1.0	41.0	11.8	5.3		
€ıq	1	1.3	1.9	0.7	27.8	37.9	3.1		
$\epsilon_2 y$	8	0.9	1.1	0.5	18.0	109.7	1.2		
ϵ_{s} h	1 1	0.8	0.8	1.1	1.6	41.0	0.9		
赣 北平均含量	(142)	8.7	4.4	3.7	4.3	44.6	3.4		
Ζ,	23	6.3	3.1	6.3	3.4	33.0	9.7		
ϵ_1	19	3.6	2.2	0.8	5.7	39.3	3.7	載南	
ϵ_1	20	5.3	5.4	<20	1.1	48.1	20		
ϵ_1	21	6.4	5.4	<20	0.7	29.2	20		
$\mathbf{D}_{\mathbf{z}}$	3	3.2	5.0	<30	1.2	27.3	<40		
D,	26	3.0	9.7	<30	0.7	10.1	<40		
$\mathbf{C}_1\mathbf{z}$	20	4.0	5.7	<20	0.7	12.0	<40		
C 20	70	3.3	5.2	<20	0.8	15.3	<40		
C2C	7	1.2	0.6	0.3	4.3	7.0	0.4		
赣南平均含量	(208)	4.1	5.3	3.6	1.6	22.9	10.7		
江西平均含量	(350)	6.0	4.9	3.6	2.7	31.7	5.7		
黎肜 (1976) 地壳重量丰度值		1.1	1.7	0.004	1.3	63.0	1.3		
泰勒 (1964) 梅申 (1966) 地壳重量丰度值		1.5	2.0	_	1.5	55.0	_		

[●] 由江西地科所三室江西钨组沿赣北、赣南有关地层剖面系统采样,广西地质中心实验室、江西有色金 属勘探公司 实验室用极谱法定量测定。

滨海一浅海盆。这时,由于靠近古陆边缘拗 陷,因而优先得到充足的矿质,形成高含量 地段, 特别是在这些部位常伴有火山喷溢, 共同构成含钨沉积建造。

2. 含钨沉积建造岩性组合、含钨丰度 和钨的赋存性状 含钨沉积建造的形成取决 于大地构造所制约的古地理 环 境、火 山 活 动、剥蚀一再沉积条件(沉积速率和沉积作 用能量)和矿质来源等方面。这些条件因地 而异,并随时间演进而变化,这就铸成有关 岩性组合的纵横变化及含钨丰度的不均匀性 (表2)。

赣北扬子准地台上,含钨沉积建造出现 的层位有双桥山群下亚群、震旦系陡山沱组 和寒武系王音铺组等。双桥山群属地槽型浅 海相类复理石建造,普遍发育有火山凝灰岩 及凝灰质砂、板岩,含钨丰度10.05ppm(其 中凝灰质板岩达24.40ppm), 人工重砂中已 发现有白钨矿与黄铁矿;陡山沱组为陆陷浅 海潮坪相硅质泥 砂 — 碳酸盐岩建 造, 含钨 9.80ppm, 各剖面变化在2.43~21.22ppm, 向北东至安徽绩溪穿层达兰田组,含钨47~ 89ppm (安徽332队, 1982), 有的已再造成 矿层 (际下白钨矿床), 王音铺组底部 为潮 坪泻湖相黑色炭质岩系,赣西北该组底部钙 硅质岩含钨13.6ppm、炭质板岩含钨2.7~ 4.1ppm, 往东都昌南山王音铺组底 部 炭质 板岩含WOs0.04~0.068% (江西916队, 1976), 往西湖南安化寺溪已再造 成 层控钨 矿层。

赣中、赣南加里东褶皱带含钨沉积建造 至少有四层: 震旦系中上部、上寒武统、上 泥盆统和下石炭统, 可能还有下寒武统 (与 炭质板岩—石煤层有关)、中泥盆统(与碎 **屑岩所夹不纯灰岩有关)的含钨建造。震旦** 系中上部和上寒武统均属槽型海相沉积,为 远陆屑具浊积特征的硅铝质类复理石建造。 兴国已发现与震旦系同生沉积的黑(白)钨 矿分散于千枚岩、石英粉砂 岩中(韩久竹

等, 1982), 在崇义水石剖面上寒武 统 层位 人工重砂见到白钨矿和锡石(江西区调队, 1964), 上泥盆统为地台单陆屑 建 造, 其含 钨丰度(ppm)砂岩为6.8, 粉砂岩7.9, "宁 乡式"铁矿石15.4~32.0;下石炭统为陆相一 海陆交互相沉积,含钨普遍偏高,资料表明共 中钨有二个来源:火山来源的钨和火山岩一 火山沉积岩相依存,如赣县水口梓山组,底 部由角砾凝灰熔岩、含砾凝灰岩组成, 含钨 达152.5和94ppm (本组采样、湖南冶金地 质研究所实验室光谱定量分析,下同)。角砾 凝灰熔岩人工重砂中见白钨矿、磁铁矿、钛铁 矿、磷灰石等, 白钨矿粒 径 0.1mm, 且 含 量<1g/t, 推测大量的钨仍可能呈离子状态 赋存于熔岩中, 陆源的钨则与一定的 沉积 岩相岩性有关。于都三门滩梓山组剖面(图 2) 为此提供了例证。梓山组整合 于 横龙组 之上,24个样平均含钨18.1ppm,为地壳钨丰 度的近17倍。横龙组顶部为凝灰质板岩夹凝 灰岩,含钨84ppm。其上梓山组属陆相为主 的海陆交互相沉积,自下而上含钨呈现递降 中有波峰出现(见图2)。这些波峰反映钨的初 始聚集与矿质来源及迁积条件有关。底部波 峰最明显,与侵蚀面以下富钨的火山沉积岩 剥蚀、再沉积有关,所见河湖相粗碎屑岩, 底砾岩含钨38ppm, 其上含 砾 粗 砂 岩含钨 34.2ppm。后者人工 重 砂 中 见 粒 径0.1~ 0.8mm之白钨矿与硫化矿物伴生, 其中方铅 矿(立方体) 0.1~0.3mm、辉钼矿(片状 体) 片径0.1mm, 均表明就近沉积特点。马 东升等(1981) 在邻近隘上外围 同一层 位 还发现黑钨矿碎屑[4],一般认为黑钨矿的 发现,指示离源区不远于3~5km。第二个 波峰恰与隘上浸染状黑钨矿层位相当,反映 在海水加深环境中,钨与粉砂一含炭泥岩沉 积伴随产出,如砂岩层面富集的绢云母薄层 含钨25.5ppm, 尤其在剖面不同粒度岩石含 钨曲线图上,显示了钨在粉砂岩、含炭板岩 中平均值偏高(图3)。这与沉积时粘土矿物 表面积大、晶体内部构造层间 又有 较大空间,可产生一定的吸附 作用,在 pH<2.5的水溶 液中钨主要量 [HWO4]¹⁻和 [WO4]²⁻,具有强结合力,因而 在 海陆交替的浅海环境中,陆源钨的沉积 主要 与粉砂、砂质软泥、黑色粉砂软泥相伴随,钨主要吸附于软泥中,随后经成岩作用停留在上述岩层中。现代鄂霍次克海、黑海底积物中钨以粉砂一砂质软泥及黑色粉砂软泥外最高,均为此提供了佐证。钨呈离子吸附状态存在并不稳定,这种靠物理一晶格吸

图 2 精南于都三门滩梓山组地层 剖富暨钨锡铜含量变化图

1-细砾岩, 2-含砾砂岩, 3-砂岩, 4-凝灰质 板岩, 5-砂质板岩, 6-板岩, 7-炭质页岩, 8-结核

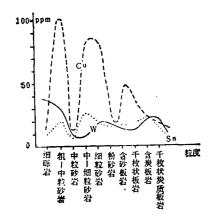


图 3 三门滩梓山组不同粒级岩石含矿曲线图

附力停留的钨较易被后期地质作用及有关水体活化、淋滤,这就为再造成矿创造了有利条件。

再造成矿——层控钨矿的形成

调研资料表明,含钨沉积建造均有一定 层位,与其他沉积层一样,沿走向、倾向均 有一定规模的延伸,因而含钨的总量是可观 的。例如赣南石炭系梓山组的展布往往受断 陷盆地限制,仅按长宽为50×20km、厚50m、 平均含钨18ppm估算,钨的总量即可达240 万吨。梓山组如此可观, 更不待说上泥盆 统、上寒武统和震旦系以及赣 北 的 王 音铺 组、陡山沱组和双桥山群等层位,无论在分布 范围和厚度上都远比梓山组为大, 因而可能 提供的钨总量更为可观。近年研究揭示钨具 有广泛的地球化学适应性[4、7],一旦出现各 种地质营力引起的温度、压力变化,特别是 地层中普遍存在各种水体,本身又具有较强 的化学活动性,一旦受热加压更能促成矿质 的淋滤浸出,由于水的补给充沛,又以渗滤 环流形式为主,能对含钨沉积建造进行充分 的淋滤,并向低温、低压、低浓度地带迁 移, 最后在合适的岩性或构造部位富集。尽 管与矿液沟通的赋矿层毕竟是有条件的、有 限的,但一旦沟通矿液就将源 源 不 断 地补 给,从而保证了矿质在这些部位充填、交代, 并反复进行,即使带出的钨总量1%被富集, 也足以构成中型以上钨矿床。

各种地质营力,一般指岩浆侵入、构造变动、区域变质、混合岩化,甚至地热增温、放射性元素衰变、深部热流体等等。它们在地史上经常出现,而且往往几种地质营力相伴作用,当其叠加部分有含钨沉积建造存在时,其再造成矿的可能性更大。就石炭系而言,岩浆入侵引起的再造作用是主要的,只有在特定环境下,如武功山一武夷山东西向构造带,靠近铅山一萍乡深断裂的枫林、永平,海西一印支期构造(岩浆)有关

.16

的"混合岩化"作用,是再造的主要因素。 事实上,只有早期 同 生 沉 积 钨 的 初 始聚 集——含钨沉积建造,而没有成岩后的再造 作用[2、7],也就不可能出现层控钨矿床,同 样仅仅有再造作用,而没有合适的赋矿层 位,也难以形成工业堆积。这就是含钨沉积 建造多见,而层控钨矿并不常见的缘由。

赋矿条件,一是适宜的构造部位,二是 有利于交代、充填的岩性。两者合一就十分 有利于矿化富集。如碳酸盐岩因其化学性质 活泼,特别是处于合适构造部位的条带状薄 层灰岩、不纯灰岩,一旦受热易变质(接受 热力--热液交代作用)形成似夕卡岩、夕卡 岩,构成地球化学障,有利于矿化富集。/正 因为如此,尽管碳酸盐岩本身钨的丰度往往 低于地壳平均值 (一般 < 0.5 ppm), 但有利 于赋矿,现今发现的层控钨矿80%与之有 关。当含钨沉积建造本身有碳酸盐岩夹层, 含矿热液就近渗滤一交代一富集,就造成自 源层控钨矿,如上犹焦里、定南岿美山、龙 南岗鼓山诸层控钨矿床, 若由于断裂等原因 沟通、导致含矿热液串层、与上(下)层位 的碳酸盐岩等有利岩性发生交代、充填、富 集,即形成他源层控钨矿。后一类 更 为常 见, 而且往往有明显的热液成矿特征, 像宁 都青塘、景德镇朱溪、铅山永 平等 矿 区所 见,规模可达中、大型,而且往往多矿种 伴生。如永平铜硫一钨矿床, 矿体受藕塘底 群中下部层位碳酸盐岩控 制,呈似层 状产 出, I-4矿体厚18m, 延长延深均逾2500m, 矿层与燕山期十字头岩体(1.81亿年)接触部 位出现贫化圈。据矿区古地磁研究(顾心如 等, 1984), 揭示矿层、地层和混合 岩 的剩 磁方向相近似, 而与岩体截然不同, 认为岩 体侵入较晚。而赋矿层位藕塘底群及下伏霞 旦一寒武系均含较高的W、Cu, 藕塘底群 发现白铁矿一黄铁矿夹层,以及似夕卡岩矿 物石榴石等含钨较高,均揭示 矿 质 来 自地 层, 而再造作用与海西一印 支期"混合岩 化"作用有关。

在贫钙地层中只要具备矿质及赋矿条件 也可以形成中小型层控钨矿,钨矿物以黑钨 矿为主, 如于都隘上、赣县水口和东乡枫林。 等自源层控钨矿床。有关含钨沉积建造属硅 铝质一铁(锰)质陆屑(含火山物质)沉积 物,矿层多限于炭质板岩所夹的泥质一粉砂 质层中。如隘上,矿层长2000m、宽1400m, 见矿五层,均产于梓山组中下部位,矿层顶、 底板均为炭质板岩(已变成红柱石角岩)。含 矿层原岩为泥质粉砂岩一粉 砂质 泥岩时, 其厚大部位矿层往往 也厚,WO。品位也高 (江西冶勘二队,1977)。有关沉积物常呈透 镜状沿走向、倾向叠置产出,控制现今所见. 矿巢及由其组成的矿体的展布。 矿 体 呈 层 状、透镜状、囊状,分布于含矿层内,从而 显示含钨沉积建造既提供矿质, 又在成矿过 程中起积极作用, 矿石金属矿物以黑钨矿为 主, 伴生有钛铁矿一金红石(812g/t)和独. 居石(254g/t),由不同比例的石英、电气石、 黄玉和少量绢云母组成各类矿石, 而且近岩 体一侧以电气石为主,远之以黄玉为主,亦显 示受西南部铁山垄黑云母花岗岩(1.77亿年): 的影响,由于岩体侵入的热变质作用致矿质 再造成矿。矿区三级背斜、向斜轴部往往出 现"砂包",也显示了构造对成矿的制约。 而赣中枫林钨矿则产于黄龙组底部,与赤铁 矿硅质岩关系密切,以含钨赤铁 矿 叠 加 黑 (白) 钨矿网脉产出,赤铁矿硅质岩层位稳 定,向西相变为锰矿层(含WO,0.16%)、 向东相变为菱铁矿层。

最近涂光炽指出:"将来钨矿找矿,如 果有大的突破, 无论国内、国外,看来不一定 是传统的岩浆期后高温热液脉状黑钨矿或夕 卡岩型白钨矿,而很可能更多的 是 层 控 类 型的,在低温条件下形成的钨矿床。"[7]永平 铜硫矿床伴生白钨矿的发现就为此提供了例。 证。早年勘探铜矿就发现钨矿化,但未予重 视, 近年重新认识, 在伴生钨矿评价方面取. 得重大突破,补充探明一个大型 伴 生 钨矿床。

综合上述,江西具有多个有意义的含钨 沉积建造,它们往往经历不同演化,或经花 岗岩化转生为岩控钨矿的间接矿源层,前人 在这方面已有详细论述,而直接经再造(或 改造)成为层控钨矿的研究方兴未艾。含钨沉 积建造与层控钨矿关系密切,前者产于一定 层位,本身就是地层组成部分,后者是以前 者为矿源层,而且其生成又受控于与之有关 的层位。因而在特定的构造前提下注意对有 利的含钨沉积建造发育地区,开展矿点评价 或就矿找矿就显得十分有意义。含钨沉积建 造所在层位就成为钨矿远景评价重要标志之 一,有了它才有成矿的物质基础。

主要参考文献

- [1]中国地质科学院情报所: 国外地质科技,1978, 第1期.
- [2]朱焱龄等:《籲南钨矿地质》, 江西人民出 版社,1981年.
 - [3] 刘英俊等:中国科学(B辑), 1982, 第10期.
- [4]马东升等《全国第一届层控矿床地球化学讨论 会文献》,1981年。
- [5] 李兆麟等:《全国第一届层控矿床地球化 学 讨论会文献》, 1981年.
- [6] 李崇佑,许 静:《钨矿地质讨论会论文集》, 地质出版社,1981年。
 - [7] 涂光炽等, 地质与勘探, 1983, 第4期.

ISSEES LES SEES ELS
W-bearing Sedimentary Formations and Stratabound

W-deposits in Jiangxi Province

Xu Jing

The production of stratabound W-deposits passed through two stages, (thepenetrative sedimentation and metamorphism) and were obviously effected by magamtism. They are belonged to multiple-mineralized hydrothermal deposits. The source beds, W-bearing formations, were the hereditary and evolutional products of tungsten in particular are as of the earth crust, in which tungsten has a non-uniform distribution and is characterised by multiple layered, multiple lithological association and diachronism features.

欢迎订购《技术市场大全》

《技术市场大全》包括的专业范围有: 测绘、遥感、地质、地理、煤炭、石油、能源、水利、农业、林业、海洋、资源调查、勘测、地震、环保、地籍、工测、区域规划、地理信息系统、计算机软件、仪器器材等。

本《大全》较全地收入科学研究与技术开发机构简介,技术开发与技术咨询机构简介,仪器器材厂家、公司、商店以及仪器检测维修机构简介,地图出版社与地图制印厂简介。刊载每个单位的名称、业务范围、负责人、地址、电报、电话、邮政编码等7项信息。此外还有:相关专业期刊简介,同外有关公司驻港驻京办事机构,仪器器材、软件等产品简目,以及广告等栏目。

本《大全》第四季度出版,为16开本,约30万字;信息量大,实用性强,是沟通信息的媒介,是进行横向联系的必备手册。订购本《大全》每本收纸张印刷或成本费10元(含邮寄费)。订购者请与北京市海淀区北太平路16号测绘研究所肖永琦同志联系。

电话: 821.2277-242

18