论矿产资源的技术经济类型及其划分

司永年

(南昌有色冶金设计研究院)

矿冶领域里的地质、采矿、选矿、冶炼等学科,对矿产资源都有自己的分类,但均属单学科分类。单学科分类已不再适用,需要有能概括矿冶技术整体的分类。 该分类可称为矿产资源的技术经济类型。本文对矿产资源提出边界类型、商业产品 类型和冶炼工艺类型三种分类方案。边界类型方案包括自然边界型、技术经济边界型和混合边界型,商业产品类型方案分矿石型、精矿砂型和金属化合物型;冶炼工艺类型方案含火法冶炼与整法冶炼两种类型。三种分类方案可做为发展矿产资源技术经济评价边缘新学科的基础,有助于找矿勘探者熟悉生产知识。做好技术经济评价工作。

矿产资源不可再生。在国家计划指导下,统筹做好矿产资源的勘探,开发、管理和立法工作极为重要。矿产资源技术经济评价是这些

工 作 方 法 工作的基础,并已发展成为引人注目的学科。

分类现状与评述

 和多金属综合矿石:在企业经济上,视所得与所 费的平衡情况,有平衡表内储量与平衡表外储量 之分。

上述分类依据单一、综合考虑不多、面向狭 窄。例如,矿床工业类型考虑的只是矿床地质方 面的特征, 至于采选冶生产技术方面的特征 却考 虑不多,因而对采选冶生产意义不大;而矿体倾 角和厚度分类只是出于选择开采方式方法需要, 与找 矿 勘 探关 系不大。再者,单学科分类多按 矿床或矿体进行,甚至在每种分类方案之下还要 再分矿种,既繁杂又重复。矿床或矿体只是找矿 勘探据以工作的单位、只有地质意义、采选冶生 产未必要继承遵守。矿产的空间归属可用矿床或 矿体定义,也可用经济区、国家、洲际和地球定义, 因此,矿产资源技术经济评价可根据需要落实到 任何一个地质或地理单元上,例如矿体、矿床、 经济区、国家等。这使矿产资源技术经济分类以 能突出地质与矿冶技术间的内在联系为准。足见, 上述单学科分类不切合矿产资源技术经济评价的 实际,需要寻求新的分类途径,以适应新学科发 展的需要

分类的新发展与评 述

目前, 在突破单学科分类观念, 寻求新的分 **类思想和方案方面**,国内外有不少类似成果。其 中值得回顾与评述的有:

1. 欧美学者H· K·泰勒 (Toylor) 1972 年 曾将矿产资源分成六种矿山类型。规则板状适合 坑下开采者,如煤、钾盐等;不规则板状适合坑 下开采者,如脉金、脉钨矿等;厚大不规则状用 坑下开采者;不规则产状平缓用坑下开采者;厚 大适合露天开采者; 小而零星用露天开采者。后 五种类型的技术经济评价要使用工业指标,而工 业指标项目组成、执行对象和使用方法等因开采 方式方法、采矿工艺不同而异。为研究这一关系 和规律,泰勒将它们划成三类:以南非金矿为代 表的 4 类: 以板状、不规则状坑下开采的有色金 属矿为代表的B类:以属天开采的斑岩矿为代表 的C类。它们的开发过程及相应的工业指标特点 见图所示。

泰勒分类的本意是研究工业指标问题,只阐 明工业指标是在生产中发生又反回制约生产技术 经济 手段。这固然是技术经济问题, 但并非对矿 产资源要实行技术经济评价的 全部内容。所以, 泰勒分类只涉及到了矿产资源技术经济评价中的 一个方面。

2. 苏联学者T·A·格道夫1975年根据选冶工 艺将金属矿产分成三种类型:用露天或坑下开采, 矿石经洗矿加工成供冶炼的合格精矿, 例如铜、 铅、锌、锡矿等;用露天或坑下开采,矿石经选 矿加工成供用湿法冶炼的合格精矿,例如钨、钼、 钽、铌矿等; 用露天或坑下开采, 矿石直接供应 市场或就地冶炼,例如富铁、富锰、铝土矿等。

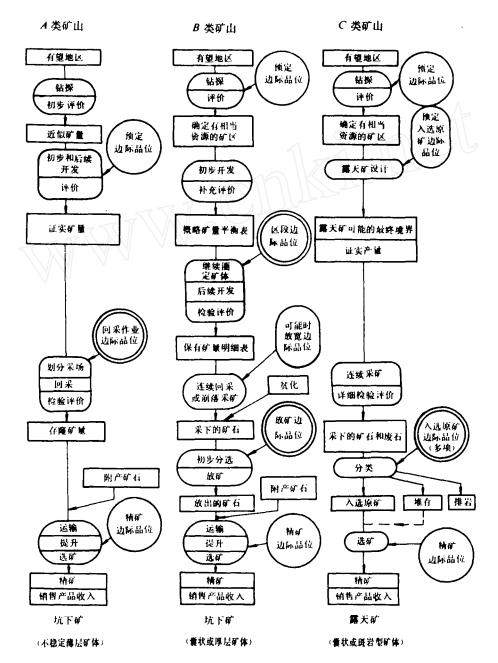
格道夫分类与秦勒分类相比,他考虑的是选 冶条件,本意是建立计算矿产资源金钱价值的数 学模型。固然,这也是矿产资源经济问题,但概 括不了矿产资源技术经济评价的所有方面。所以, 格道夫分类也只涉及矿产资源技术经济评价中的 部分内容。

3. 我国黑色冶金矿山设计系统根据40个铁矿 探采对比资料,将铁矿划分成三种矿山类型:用 露天开采的层状、似层状大或特大型矿床,以鞍 山大孤山铁矿为代表; 用露天开采、厚及中厚、 形态复杂的中小型矿床,以大冶铁矿为代表:用 坑内开采、厚至中厚、形态复杂的中小型矿床, 以金山店铁矿为代表。这样分类的本意是研究储 量误差与矿体形态、规模的关系,因之没能与矿 产资源技术经济评价联系一起去扩大论述。

上述分类都与矿产资源技术经济评价关系不 大,不是矿产资源技术经济类型的专门论述和系 统划分, 但可以它做"新生点"去探讨类型划分 新方案。

矿冶技术与地质

矿产资源有百余种,按储量规模划分有大、 中、小不同量级。若从勘探采用的手段看,一是 "单打一"用钻探按规范要求把它探明查清,二 是要坑、钻结合; 就经济合理的开采方式看, 一 是用露采方式合理,二是用坑采才能盈得较好效 益; 就选矿加工技术看, 有的用重选流程, 有的 只能用浮选, 就冶炼提纯方法看, 有的属火法冶 炼工艺型,有的属湿法冶炼工艺型;就矿产品的 合理加工深度看,有的只需加工成矿石或精矿砂, 有的则要加工成金属化合物。这都说明,虽然, 地、采、选、冶等一系列矿冶技术与技术进步有 关,但却不能违背地质这个基础。例如脉矿要以 坑采为主,钨选矿只能用重选流程,钽铌必须用 湿法冶炼工艺。


类型划分新方案

根据矿冶技术与地质的关系、找出起决定作 用的地质因素,结合中外已有的分类基础,笔者 对矿产资源提出以下分类方案。

(一) 边界类型方案

矿体边界有几种情况:一是清晰、能用肉眼 分辨的自然边界; 二是缺乏地质标志, 需凭工业 指标去人为划定,因之不能为肉眼所分辨,再是 两者皆有出现, 其混合性质。根据这些边界特点, 拟将矿产资源划分成自然边界型,技术经济边界 型和混合边界型三种

1. 自然边界型: 自然边界型资源以脉矿为代

不同矿山类型的开发过程和工业指标

表,例如脉钨矿、脉金矿、脉锡矿、脉铜矿、脉 钼矿等。脉矿的经济矿物局限在脉体里富集。在 成矿前后虽伴生有各种蚀变,但不致侵蚀和模糊 脉体与围岩界限,且蚀变围岩一般不浸染有经济 矿物,或者甚微。脉体里经济矿物的分 布 虽不均 匀,但这只影响脉体含矿的连续性,工业指标只能 区分出工业脉段与非工业脉段,不能改变工业脉 段与围岩之间的界限。

2.技术经济边界型:斑岩矿、夕卡岩矿的经济矿物虽局限在一定的岩体(层)里富集,形成矿化带,但矿化岩体(层)受岩相及蚀变响影,与围岩没有固定标志。再则矿化带并非全符合工业技术要求,要从中用工业指标圈出工业矿体一旦工业指标改变,工业矿体即发生变化,形成

新的 矿 体边界。

3.混合边界型:细脉带矿 (例如源塘钨锡 矿),由可见与不可见脉 成群 成带 穿插变质岩形 成。脉幅小,延长延深不大,要与其他脉合并成 带才有工业价值。但因脉带的含脉密度不均匀, 需要按工业指标要求划定工业脉带边界。脉带里 的可见脉具自然边界特点,而脉带整体却具技术 经济边界性质, 故细脉带 矿可称 为混合边界型 资源。

自然边界型和混合边界型资源有时发生相互 转化。我国的脉钨矿多成群成带出现。脉群由主 干大脉和旁侧支脉、细脉组成。早在50~60年代, 只是主干大脉才有工业价值,属自然边界型资源。 70年代后,由于采矿技术的进步、开采量增加, 主干大脉日趋消失,不得不开采旁侧支脉和细脉, 但需要将它与主干大脉合为一体综合开采。过去 属自然边界型的主干大脉,从70年代起却与旁侧 支脉、细脉合并为混合边界型资源。

按照边界特点,将矿产资源划分为三种类型, 这不仅是理论研究, 而且对找矿勘探和采选生产 也有实用价值。

1. 选择勘探评价方法

- (1) 自然边界型资源多以脉矿为上,经济矿 物分布不均匀,品位变化大,具脉矿的成矿特点, 只有坑钻结合才能将其勘探到现行规范所规定的 程度;而技术经济边界型资源与脉矿相比一般厚 度大,矿化稳定,品位变化不大,只要不惜加密, 单用钻探就能勘探到规范所规定的程度。
- (2) 技术经济边界型和混合边界型的储量计 算一般需要四项基本指标: 边界品位、最低工业 品位、夹石剔除厚度和最低可采厚度。而自然边 界型的储量计算虽也离不开上述指标,但使用方 法和执行对象不同: 边界品位是用以区分工业与 非工业脉段, 执行对象是工程所揭露的全脉幅: 最低工业品位是执行到块段(开采块段或地质块 段); 夹石剔除厚度是虚设指标, 至于最低可采厚 度,则需与最低工业品位合并成米百分比指标才 便于使用。
- (3) 自然边界型的矿体形态、厚度等取决于 地质特征,而技术经济边界型的矿体形态、规模、 厚度等则主要由工业指标决定,具一定人为性。 例如德兴斑岩铜矿 (表1)。

德兴铜矿矿体个数与工业指标的关系

- 2		ı	ı	
	۰	-	٠	

項目	边界品位	量低工业品位	間出矿体	矿石总量	平均品位
方 集	Cu(%)	Cu(%)	个數	的相对比	Cu (%)
I	0.20	0.40	}. 9	1.0	0.49
П	0.30	0.50	119	0.611	0.56
Ш	0.40	0.60	188	0.290	0.65
					<u> </u>

2. 选择开采方式方法

自然边界型的矿体投影呈面状或线状,属采 矿学的 薄或极薄矿体,一般只适合坑下开采,方 法多为留矿法、房柱法、削壁充填法等。技术经 济边界型的矿体投影均呈面状,一般属采矿学的 中厚和极厚矿体、露采与坑采皆有使用。

3.选择选矿工艺

鉴于自然边界型的脉体与围岩的物性不同, 内眼能够分辨,允许辅加手选工艺。技术经济边 界型则完全不具备手选条件。

(二) 高业产品类型方案

在市场流通的矿产品有矿石、精矿砂和金属 化合物三种。洲美国家为追求利润,矿产品方案 是技术经济论证中的重要内容; 在我国, 矿产品 方案既涉及企业利益,又影响国民经济计划平衡 的全局,也是技术经济论证中的重要内容。但具 体到一处资源,究竟选择那种产品形式参加市场 交换,往往是地质因素决定的,不能为技术经济 论证所改变。三种矿产品类型实际是矿产资源地 质特征的一种反映。根据这种反映,矿产资源可 划分成矿石型、精矿砂型和金属化合物型三种。

1. 矿石型:矿石型资源的经济元素或矿物组

成单一, 丰度高, 勿需选矿富集和除杂就能满足 冶炼技术要求,可就地冶炼或参与市场交换。该 类矿产以富铁、富锰矿为代表,例如海南铁矿 (表 2) c

海南铁矿商品矿石品级表

品 级 成分 (°e)	平炉富矿	高炉富矿	高炉高硫富矿
Tle	62.07	52.82	51.12
SiO	9.71	19.28	18.16
4	0.025	0.065	1.368
P	0.015	0.017	0.020
	_ =	77	UNIO)

2. 精矿砂型:有色、稀有和贵金属等矿产、 经济元素或矿物种类多,丰度不高,品位多在1%。 以下,不能直接冶炼,需选矿富集和除杂,分离 成单独合格精矿才能参加市场交换。例如铜钼矿 要选矿分离成铜精矿和钼精矿才有商业价值、在 国土开发程度不高、富矿储量丰度的加拿大、为 减少销售运输, 甚至品位高达20%的铅锌富矿, 也要预选矿处理。凡需要预选矿处理成精矿砂的 资源称精矿砂型。

3. 金属化合物型: 在金属矿产中有两类不可 选或难选,但工业价值很大的矿产。一是经济元 素以多种形式分散夹杂在造岩矿物中,不呈或很 少形成独立矿物。选矿不能把不呈独立矿物存在 的经济元素富集到精矿里,而用化学方法、把经 济元素转换成化合物,而后萃取出高纯度的化合 物产品。例如,我国的花岗岩风化壳型稀土矿。二 是某些多金属综合矿产, 各经济元素虽都形成独 立矿物,但结构构造和配比关系复杂或结晶粒度 细,选矿效果差、回收率低、分离不出单独的合 格精矿。合理利用该类矿产的最优方法是采用选 冶联合处理流程 即在保证回收率的前提下,把 预选 矿加工成混合毛精矿、然后供水冶处理,分 离成单独的金属化合物。例如大吉山钨矿的伴生 矿产——花岗岩型钽铌钨矿。凡以金属化合物形 式充当矿产品的矿产称金属化合物型。

商业产品类型方案说明矿产资源的加工难度 和深度不是固定不变的,往往因类型而异。此方 案可帮助找矿勘探者根据资源条件,意想出所需 要的加工深度,以针对需要为生产准备矿物原料 基地。

(三) 冶炼工艺类型

冶炼是利用矿产资源的深加工环节,视金属 元素的化学行为选择火法或湿法 (水冶)两种技 术方法。

早在1933年,曾有人对德国曼斯菲尔德的铜 矿石冶炼中的元素(产为特征作过研究(表3)。

		铜矿石冶炼中的元素分析		秦 3	
冶炼	产品	芃	*		
炉	濇	Al, Ca, Cr, K, Mg, Na,	O. Si . Ti	. w	
冰	餇	Ag. Cu. Mn. S			
生	铁	Au, Bi, C, Co, Fe, Ir, Mo	. Ni . P. Pt	. Pb. 5 a	
烟	尘	Cd,•Pb, Zn			

地球化学上亲氧、高温下呈氧化物结晶析出的元 素、多残留在熔融不化的炉渣里; 而亲硫、中低 温下呈硫化物结晶析出的元素,多与冰铜、生铁 融合一起。此外,在矿石品位表达方式上,铜、铁、 铅、锌等用 金属百分比表示,而钨、钽、铌、铝、 铍等则用金属氧化物表示。以金属百分比表 示者与冰铜、生铁关系密切,以金属氧化物表示 者与炉液密切。在冶金学上、金属可分:熔点低 可用火法冶炼提取的常规金属,例如铜、铁、铅、 锌等:熔点高用水冶提取的高温金属,例如钨、 包、铌等: 与氧亲合特强用水冶提取金属氧化物 而后电解提取的碱金属或轻金属,例如铝、铍、 锂等,

可见,元素在冶炼中的分布与它的地球化学 行为基本一致,与元素的物理化学性质有关。这 样,可根据金属冶炼工艺对矿产资源实行分类。 即把矿产资源划分成火法冶炼型和湿法冶炼型两 种,前者多为常规金属矿产,后者以稀有金属矿 产为代表。这种分类方案称为矿产资源的冶炼工 艺类型。

火法冶 炼过程是物理化学反应, 抗其他元素 干扰能力差,对有害杂质要求严, 湿法冶炼过程 是纯化学反应,可变有害元素为有用组份,不苛 求杂质限量。因此,要求在勘探火法冶炼型矿产时注意查找和评价有害元素,例如铜矿中的砷, 铁矿中的铅、锌等。

本文提出的矿产资源技术经济类型及其划分方案,在理论上可作为发展矿产资源技术经济评价边缘学科的基础:实际上可帮助找矿勘探人员根据地质条件,意想到未来要使用的采选冶技术,做好技术经济评价工作。

参考文献

- [1] Т. А. Готов : Экономическая Оценка Месторождения Цветных Металлов, М.: Непра, 1975
 - [2] 冶金矿山设计参考资料, 冶金工业出版社, 1973
- [3] Fluor: Dexing Copper Project, Geology and Ore Reserves, Phase 1—Conceptual Engineering, 1979

On Technical-Economic Types of Mineral Resources and. Their Classification

Si Yongnian

(Nanchang Designing Institute of Non-Jerrous Metals Industry)

Abstract

Mineral resources may be classified unitarily according to criterions of respective disciplines such as geology, mining, ore-dressing and metallurgy. This classification method based upon a single branch of learning is no longer suitable to the generalized case. A universal mineral resources classification method which comprehensively sums up the criterions of all related science and arts including geology, mining, ore-dressing and metallurgy is needed. It may be called the Technical-Economic Method Classification, according to which mineral resources may be classified into three types: 1-boundary type, it can be subdivided further into natural, technical economic and mixed boundary types; 2-commercial product type, including ore mineral, concertrate and metallic compound subtypes; 3-metallurgical technical type, including hydrometallurgical and pyrometallurgical subtypes. This technical economic mineral resources classification is very helpful for one valuation.