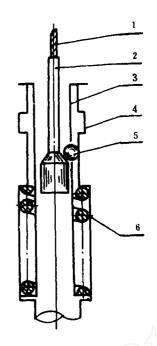
在旋转平面上360°范围内的任何位置均可夹扭 钻杆,从而满足了扭管时空间位置变化的需要。 为夹紧钻杆,钳内镰有四块长形合金,接触面积 大。还设计有自动调节机构,保证了夹紧力的对 称性, 在较大扭力下, 不会造成钻杆变形。


使用这种装置,可根据钻杆外径尺寸选用相 应的扭管钳, 拧上及卸下钻杆用同一把扭管钳, 仅改变180°的上下夹紧方向,工作十分方便。

该扭管机在浙江有色地质勘探公司三队进行 了生产试验, 经近一年的长时间工作考验, 性能 良好。

(周汉竇供稿)

绳索取心安全装置

在绳索取心钻具设计中, 安全脱勾装置是一 个有代表性的环节,为了安全可靠,目前已设计 出多种类型,但各有其不足之处。如金属锥形销 结构,结构虽简单,但难以保证准确的拉断强度, 废件更换也不方便; 如靠重力滑动件 (筒) 的脱 勾装置,在大倾角钻孔里有失效的可能。本文所 介绍的安全装置(见图),是靠拉力轴2向上移动, 通过钢球5带动球套3对弹簧6进行压缩,当弹 簧压缩到一定长度后,钢球3进入外壳体4的凹

安全装置结构示意图

槽内,从而使拉力轴解放,安全脱出。这种结构可 通过预先对弹簧的标定调节,达到准确的设计拉 脱值, 使机构具有较高的可靠性。

该机构是由冶金部第一冶金地质勘探公司探 矿技术研究所研制的。

(周汉青供稿)

砂矿钻探方法的选择和钻孔质量指标探讨

张运钓

(地质矿产部勘探技术研究所)

由于砂矿是某些稀有金属、贵金属、有色金 属及部分非金属的重要来源,并有易找、易采、 易选、投资少、收效快的特点、因此、许多国家 都相当重视砂矿的勘探与开发工作。我国的砂矿 开发工作, 目前正处于发展初期, 钻探技术方 法还不完善, 人们对于如何优质高效地进行砂矿 勘探,如何选择砂矿钻探方法,如何评价砂矿钻 孔质量等问题, 正在探索与研究, 本文就此谈谈 个人浅见, 以与同行商榷。

砂矿钻探方法的选择

砂矿的钻探方法包括多种具体方法,它与钻 孔结构、钻探设备、工艺、取样方法、取样工具、 取样工艺等密切相关。下面就以钻探方法为主, 结合各技术环节加以探讨。

一、钻进方法的选择

就砂矿钻探而言,钻探是基础,取样是关键。 取样往往决定了整个砂矿勘探的质量。

68

钻进与取样虽然一般是分别进行,但二者相 辅相成, 互相制约, 故选择钻方法时, 首先要考 虑取样问题。此外, 还要综合考虑设计孔深、孔 径及某些特殊要求、经济效益等因素。因此, 研 究、比较各种钻探方法的技术特点是必要的。目 前,根据井底破碎岩石过程中所施加的外力的性 质与方法,砂钻又可分为四种基本类型,

1.冲击钻进法——包括钢丝绳吊锤冲击套管 钻进; 钢绳抽筒钻头、劈刀(冲击钻头)等冲击

钻进;大口径抓斗冲击钻进。

- 2. 回转钻进法——主要指无循环冲洗液的慢 速回转钻进法(即干钻),也包括有循环冲洗介质 的回转钻进法(如空气反循环连续取样回转钻 进),以及无泵反循环钻进法等。
- 3.冲击回转钻进法——包括潜孔锤钻进,牙 轮钻头钻进、钢丝绳冲击和回转复合钻进等。
 - 4. 振动或振动回转钻进法。

以上四种钻进方法所适应的范围大致如表1。

钻进方法	适应范围及钻孔结构参数
冲击钻进	第四纪地层、松软腐植土、耕土、粘土、砂质粘土层、含泥量高的小卵石层、砂层、粒径较小的砂砾石层 适宜孔深: 3~10米;常用口径:130,150毫米
冲击回转 钻 进	砾石含量较多的或中等粒径的卵砾石层、风化基岩、砂砾石层、碎石层、硬砂层、松散破碎层、永冻层适应孔深: 10~30米, 常用孔径, 130, 150, 325毫米
回转钻进	塑性大的粘土层、硬质粘土层、坚硬岩层、基岩、巨砾、永冻层、含泥质的砂砾石层、坚硬砂岩、海滨砂矿适宜孔深: 10~30米; 常用口径: 130, 150, 168, 219毫米
振动或振动	粒径50毫米左右的砂砾层、松散砂层、砂土层、粘土层、海滨砂矿等

砂钻钻进方法选择参照表

实践证明, 冲击钻进是最基本的方法。但只 靠单一的施工方法,往往达不到最佳效果,而应 灵活多样,分层选用或综合应用多种方法。目前 以冲击回转或振动回转复合钻进方法的钻进效果 最佳。

适宜孔深: 10~20米; 常用孔径: 130, 150毫米

二、钻孔结构的选择

回转钻进

- 1.钻孔结构的设计,除应充分考虑地质条件、 孔深、取样方式、护壁措施、设备类型及地质要 求等几个相互联系的因素外,一般官用"一径到 底"的结构方案。
- 2.钻孔直径的合理选择,应以满足地层中 80%以上的岩矿心样品能顺利地进入套管为原 则。具体应按套管内径和砾石直径(指砂样中的 最大砾石直径) 之比值大于3来选择。要求穿过 矿层及钻入基岩的终孔直径应分别不小于110毫 米和91毫米。
- 3.对深孔可采用多级口径结构, 但同一矿层 应尽量采用同一口径钻进。

三、钻探设备及工具的选择

1. 砂钻设备的选择如同其他环节一样, 应充

分考虑技术要求、施工条件和经济合理性。

- 2. 应选用低转速,大扭矩,具有冲击、回转、 振动等多种功能的钻机。 为便于搬迁,应尽可能 选择自行式或拖车式。目前我国用于砂矿钻探的 主要设备性能见表2。
- 3. 应根据钻进方法、地层条件、钻孔深度和 结构尺寸等选择钻进工具(见表3)。

四、钻进工艺的选择

- 1. 主要应根据地层条件选择钻进工艺。不同 的钻进方法的钻进工工参数列入表 4。
- 2. 根据钻进中有无套管护壁,和套管护壁与 取样深度之间的相对位置, 以及由此影响钻进操 作程序的差异, 通常将钻进工艺分为四种基本 类型:
- (1) 套管超前钻进工艺——套管护壁钻进 深度始终超前取样深度, 在套管内进行分层、分 段取样。适用于松散的、流动性的含水地层,效 果稳定可靠。
- (2) 平管钻进工艺——套管护壁钻进深度 与取样深度保持在同一深度上。适用于中等硬度

發 2

钻进工具	钻进方法							
加 亚 上 八	冲击	冲击回转	回转	振动或振动回转				
套 管	•	•	•	•				
套管鞋	•	•	•	•				
勺形 钻			•					
螺旋钻			•					
单、双层岩心管、				•				
双壁钻管				·				
硬质合金钻头			•	•				
钢粒钻头			•					
牙轮钻头			•					
潜孔锤	•	•						
筒口锹	•							
冲击钻头	•	•						
抽筒钻头	•	•						

的稳固地层。

(3) 跟管钻进工艺——护壁套管钻进深度 滞后取样深度,在套管下端采用小径钻具进行钻 进、取样。它适用于套管确实无法超前钻进的地 层,或遇到含有大砾石、巨砾、坚硬岩层,以及 基岩等特殊条件。而且取样钻头不得超过套管一 个取样长度,应尽量实现管内取样(或补样)。

(4) 无套管钻进工艺——整个孔是裸眼钻

各种钻进法所用主要参费	各	种	钻	进	法	所	用	主	要	*	數
-------------	---	---	---	---	---	---	---	---	---	---	---

表 4

钻进方法	主要钻进工艺参数
冲击钻进	1. 钢绳吊锤冲击钻, 130~150毫米口径时, 锤重100~150公斤, 行程1~4米,冲击次数15~25次/分。 325毫米口径时, 锤重400公斤, 行程500~1000毫米,冲击次数15~20次/分。 2. 采用抽筒钻头钢绳冲击钻时: 行程0.5~1.0米,冲击次数15~25次/分。
冲击回转 钻 进	1.冲击行程、冲击次数等技术参数与冲击钻进的工艺参数相同。 2.转速一般在2~10转/分,扭矩在400~2000公斤·米。 3.潜孔锤钻进工艺参数请参阅其他有关规程。
<u> </u>	1. 一般回转钻进转速不得大于125转/分(以40转/分左右为宜),扭矩在400~1000公斤·米范围, 钻压300~600公斤。 2. 采用无泵反循环钻进,转速为100~200转/分、压力150~400公斤,提动频率8~25次/分,提动高度
转	50~100毫米。 3.采用小径合金钻具在套管下部进行回转钻进,转速在100转/分左右,压力200~400公斤。钻进前孔内
钻	适当灌注清水,钻进时,适当提动钻具。
进	4.当采用钢粒钻具在套管下回转钻进时,转速在100转/分左右,压力300~600公斤,第一次投砂量为 3~5公斤,以后补给一般1~2公斤。钻进时系采用干钻,不得使用循环冲洗液。
振动或振动	1.振动频率: 1000~2500次/分, 2.激振力: 1500~5000公斤,
回转钻进	3.偏心力矩: 70~150公斤·厘米, 4.回转转速: 40转/分左右。

进和取样。它只适用于永冻层,个别胶结好的稳 定地层,已确认不含矿的表土层等。—般不用这 种方法。

- 3. 为保证钻探质量,钻进中必须遵守下列钻 进工艺规定:
- (1) 砂矿钻进一般不允许使用循环冲洗介 质来冷却钻具与护壁,必须用套管护壁。
- (2) 对于护壁套管的回次进尺长度, 回转 速度要有一定的限制。一般第一个回次进尺(开 孔) 可钻到1~1.5米,以后每回次不得超过 0.5米。在好地层中, 当采取率大于80%时, 其 回次进尺长可增加到1.5米以内。当遇到流砂层、 淤泥层、承压水层、涌砂层以及可用"拔管"取 样的地层时,才允许不限回次进尺,快速穿过, 以后再取样。钻进中套管的转速一般应低于125 转/分,以免扰动样品。
 - (3) 护壁套管每进尺一个回次, 都应进行

- 一次砂样进样率的探测和计算,如果进样率低于 80%, 应停止钻进, 及时采取措施。
- (4) 在极松散地层中、钻速较高、但讲样 率往往不够, 克服的办法是: 选用较大的钻孔口 径; 严格限制回次长度; 及时排除存在于套管鞋 或钻头下的堵塞物; 减少冲击锤的重量与行程; 降低套管的回转速度或提高振动频率; 相应地放 慢套管进尺速度等。
- (5) 在永冻层中钻进, 可适当地向钻孔里 加注热水或蒸汽,以帮助融化冻层,但必须严格 控制加入量,并一定要在套管内取样。

五、取样方法和工具的选择

用什么样的取样工具,主要应考虑取样方法、 地层条件及设备能力等因素。目前所使用的各种 取样方法和其适用范围以及相配合的工具均列于

EQ.	样	方	法	及	I	具	选	挥	*	舺	表

取样方法 取样工具		取样工具	适 用 地 层		
抽	汲	提砂筒抽筒钻头	除去未破碎的大砾石,坚硬岩层,基岩以外的松散地层,含水层,淤泥、泥浆及孔内积水等。		
		钻斗	细一粗砂层,松散破碎层,含小砾石的砂砾层		
回	转	单管或双管钻具	有一定胶结性地层,含水砂砾层,坚硬地层,粘土层,巨砾,水冻层、基岩及能进行"拔管" 取样地层。		
		勺形钻,螺旋钻	胶结性较好的地表覆盖层,粘土层,砂质粘土层,含水砾石的粘土层等。		
打	入	单管或半合管钻具, 抓式取样器等	胶结性比较好的地表覆盖层,砂质粘土层,含水砾石的粘土层,砂层以及能进行"拔臂"取样的地层,滨海沉积层。		
		筒口锹	不含水或含水很少的地表腐植土层、粘土层、含少量砂砾的粘土层。		
抓	取	抓斗	含有直径在100~300毫米的卵砾石、砾石地层、砂砾层、粘土层、含水砂砾层等。		
反復	循环 双豐钻管 松散的碎石层、砂层,含小砾石的砂砾层,砂质,粘土层,经破碎后的砾石、卵石				

六、取样工艺的选择

- 1.取样工艺受方法和工具的影响。
- (1) 提筒取样, 要求提动频率为15~25 次/分,提动行程0.1~0.4米,每取一次样,其 上下串动次数为3~10次。
- (2) 回转法取样: 转速在 2~40转/分左 右,最高不要超过125转/分,压力在300~600公 斤。在坚硬岩层中回转取样时,转速可以适当 提高。
 - (3) 打入法取样, 其工艺参数与冲击钻进

工艺参数相同。

- (4) 抓取法时: 抓斗落下的高度不应大于 1.5米; 不同的地层应选配不同的锷片。
- (5) 空气反循环连续取样: 要求有足够的 风量和合适的风压,以保证足够的气流上返速度。 一般用5~9个大气压,15~30米,的压风机。
 - 2.与钻进工艺相应的四种取样工艺
- (1)套管内取样工艺——始终在套管内取 样,每取完一个样后,套管内始终保留0.1~ 0.3米的岩样柱作为砂塞,然后再钻进一定深度,

如此循环完成钻取任务。

- (2) 平管取样工艺——取样深度和套管钻 进深度保持一致。这种工艺只适用于能保证采取 率的好胶结层及不含水地层的取样。
- (3)套管下面取样——取样长度必须控制在0.3~0.5米,取样后应立即跟管护壁。这种工艺只适用于遇到巨砾,坚硬岩层及基岩、流砂层等条件。
- (4) 无套管护壁取样工艺——适用于永冻 层,个别胶结性好的稳固地层。

砂矿钻孔质量指标

砂矿钻探工程质量指标与岩心钻的质量指标 基本一致。在编制我国砂矿钻探规程时, 经与同 行商讨,现拟出以下四个方面的质量指标(原为六项指标,此处将四、五、六合写为一条——编者)。

一、砂样采取率

- 1. 矿区平均采取率必须达到80~150%。
- 2. 非矿层(包括基岩)平均采取率一般不得 低于75%。
- 3.单样采取率一般应在80~150%以内,全 孔单样采取率的合格率应达到80%以上。
- 4.某些粘性强及易于松散地层的采取率应有 所差别,前者应少于后者。

由于某些复杂地层条件影响,虽经努力,有时仍达不到上述规定时,根据需要与可能,由 探矿与地质部门协商另拟指标。

5. 岩矿心采取率按下式计算:

岩矿心采取率 = 实际测量得到的松散体积数 × 100 % 所采岩样的理论体积数

- 6. 由机台人员将取出的岩矿心样品置入盒 中,并进行编号和妥善保管。
 - 二、岩矿心(砂样)采取规格
- 1.一般应分层分段连续取样,不得间断或 混淆。
- 2.取样长度视钻孔中地层层次、含矿情况等因素而定。一般每个样长为0.2~0.5米,含矿比较均匀时可达到1米。在含矿层或换层部位,取样长度宜小一些,一般控制在0.2~0.4米。
- 3.对已经确认的非含矿层或含矿极微的地层,以及其他特殊地层,取样长度可适当延长或不取。
- 4.要求全孔单样取样长度的合格率须达到 80%以上。
- 5. 对于某些复杂的砂矿层,由于地层条件的 限制,确实无法按要求的规格取样时,可由探矿 与地质双方另行确定指标。

三、钻孔深度

1.钻孔深度设计,主要视矿层埋深条件而定, 同时考虑矿化特点及地质工作要求。—般钻孔必 须钻到并取样到基岩或底板0.5 米左右, 着松散层特别厚时, 以穿透矿层为原则。

2. 及时准确地测量换层、矿层顶、底板位置 和终孔深度。孔深误差率不超过千分之五,超差 时应及时重新丈量,并校正报表。

四、简易水文地质观测与原始报表及封孔

- 1.应观测钻孔的初见水位, 终孔后测一次终 孔水位, 每班至少观测 1~2次。对冻结地层及 其他特殊地层应进行观测、记录其埋深和厚度。 钻进中遇涌水、涌砂或漏水时,均应及时记录其 深度。
- 2. 机台必须指定专人在现场及时认真地填写 原始记录(用钢笔)。
- 3.据地质设计要求,需要做封闭的钻孔,一般可用粘土、砂土等物填实;被封闭的钻孔,一般须在孔口中心设立木桩或水泥桩标志,并在桩上注明勘探线、孔号;农田里的峻工孔,封孔可不设标志,但必须立即测定钻孔坐标。

参 考 文献 (从略)