水泉金矿成矿规律的初步研究

倪富昌

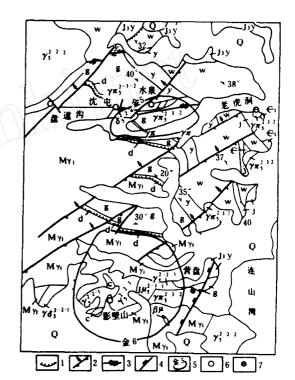
(辽宁省地矿局第四地质大队)

水泉金矿位于辽宁虹螺山花岗岩体东侧,其 周围构造发育、是一个有色金属成矿远景区。

区域地质概况

区内出露地层有长城系常州村组长石石英砂 岩、石英砾岩,大红峪组含砾长石石英砂岩,高 于庄组白云岩, 杨庄组粉色白云岩、砂岩, 雾迷 山组燧石条带白云岩,景儿峪组含海绿石石英砂 岩、角砾岩: 寒武系紫色粉砂质页岩和侏罗系义 县组安山岩、凝灰岩等(图1)。

区内断裂构造发育, 通过全区的主要有老虎 洞水泉一钢屯、营盘—杨家杖子两条东西向断裂。 北东向断裂多条,显压性特征,和垂直北东向断 裂的一组北西向张断裂。


岩浆活动主要有太古代和燕山期两个旋回, 主要侵入岩见表1。

区域内的	主要侵入岩	表!

旋回	代号	岩石名称	*	状
	γπ ² , 3-2	花岗斑岩	岩	Ħ
燕	δμ3 ²⁻³⁻¹	闪长玢岩	岩	朋
<i>7</i> 00]μ ₅ ²⁻³⁻¹	辉绿岩	岩	贴
ш	8 2 2-4	闪长岩	岩	财
ш	γ ₃ -2-3	细粒花岗岩	岩	膊
	γ ²⁻²⁻²	红色花岗岩	岩	棋
期	γδ 1 -2-1	花岗闪长岩	岩	Ħ
太古代	·MΥı	混合花岗岩	岩	1

矿床地质特征

1. 含矿岩体 本区含矿岩体主要为闪长岩 和花岗斑岩。

Q--第四系: 5y-侏罗系义县组 安 山岩 和凝 灰岩: - - 寒武系紫色砂质页岩: j-震旦系 景儿峪组燧石角砾岩; w-震旦系雾迷山组燧 石条带白云岩; y-震旦系杨庄组燧石条带白 云岩; B一震旦系高于庄组燧石条带白云岩; d-震旦系大红峪组含砾长石石英砂岩; c-震旦系常州村组石英长石砂岩、石英砾岩; γπ; 3-2-花岗斑岩; J内 - 3-1-辉緑岩; δ; 2-4 一闪长岩; γ; ''一细粒花岗岩; γ; ''一红 色花岗岩; M Y, 一混合花岗岩; Υπ-花岗 斑岩; 1-不整合地质界线; 2-压性断层; 3-压 扭性断层; 4 一新华夏系断层: 5 一金重砂异 常: 6-金矿床和矿化点: 7-银矿床

- (1) 闪长岩: 岩体为似哑铃状岩脉,东西向展布,长5km,宽20~600m,出露面积约3km²,同位素年龄为160百万年①。岩石呈深灰色,中细粒或斑状结构,块状构造,主要由中性斜长石、普通角闪石、黑云母组成,次要矿物有石英、钾长石,副矿物为磷灰石等。沿节理裂隙常见有石英、黄铁矿等硫化物细脉。闪长岩属正常系列岩石, s=66~76,铁镁含量高,Na₂O+K₂O=7.03~8.30%,Na₂O>K₂O。
- (2)花岗斑岩:岩体呈不规则的岩枝状, 地表出露长300m,宽80m,倾向北西,倾角30~ 40°,同位素年龄118百万年^②。岩石呈肉红色,斑 状结构,斑晶为钾长石、斜长石、黑云母和石英, 斑晶粒径为3~5mm,含量约30%;基质为花 岗质结构,副矿物有锆石、磷灰石等。岩石属铝

过饱和系列, $s = 65 \sim 78$, $Na_2O + K_2O = 7.79$ $\sim 8.46\%$, $a/c = 7 \sim 47$.

2. 含矿带和矿体 含矿带产于闪长岩体内, 主要有三条,总体呈东西向展布;地表出露二 条,长200~500 m,宽20~70m(图2),倾向 北,倾角60~80°,延伸250~450m。含矿带由角 砾岩、石英网脉等组成;角砾主要是闪长岩,砾 径约10cm,为含硫化物的石英脉所胶结,石英脉 宽1~15cm,含脉率10~50%。

三个含矿带共圈出主要矿体 4 个。矿体埋藏 浅,长120~265m,厚1.10~7.50m,延续性好, 厚度变化稍大。矿体多呈脉状,产状与矿化带一 致。矿脉地表出露不全(图 3),品位 5 ~50g/t, 伴生有 Ag, Cu等。钼矿化多沿花岗斑岩接触带 和北西向破碎带分布。

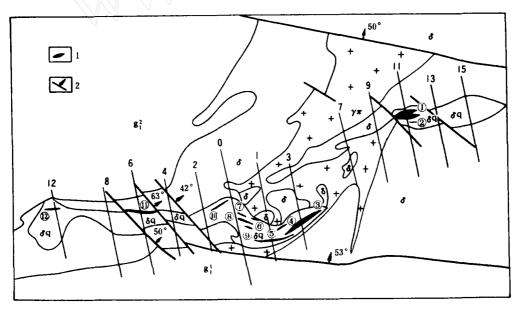


图 2 水泉金矿含矿带和矿体分布略图

8;-震旦系高于庄组一段含锰白云岩;8;-高于庄组二段白云岩;γπ-花岗 斑岩;δ-闪长岩;δq-含矿带;1-金矿体及其编号;2-断裂及其产状

金矿物以含银自然金为主,其次为银金矿、 自然银等。主要金属硫化物为黄铁矿、黄铜矿, 其次为辉钼矿、黝铜矿、方铅矿、闪锌矿、辉铋 矿、硫砷铅矿等。脉石矿物以石英、白云石为主, 其次有钾长石、方解石等。

矿石可分为含金石英一黄铁矿型和碳酸盐— 黄铁矿型(少见)等类型。

含银自然金常呈树枝状 (照片1)、不规则粒

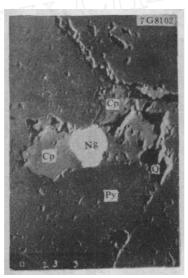
①辽宁省地质矿产局综合研究队徐详成采样,长春冶金研究所测定,1981。

②核工业部北京铀矿地质研究所测定、1982。



图 3 水泉金矿丁,号矿体立体剖面图 δ 一闪长岩;γπ-花岗鹿岩; δq-含矿带; 1-金铜矿体; 2-钻孔; 3-穿脉坑道

状 (照片 2) 分布于黄铁矿裂隙中, 电子探针X 射线象(照片3)显示Ag, Ag元素分布均匀,


两者呈固溶体。金矿物的电子探针分析结果见 表 2。

	主要含矿物电子探针分析"表 2				表 2			
•	样	号	采样位置	金矿物	ŀ	分析** 6	ì	(相对)
				:	Au	Ag	Fe	Cu
•	81	02	T,	含银自然金	85.18	14.82	0.28	0.06
	81	10	Т,	银金矿	73.45	26.55	0.601	0.137

- * 核工业部北京铀地质研究所张宜、黄玉柱分析, 1982。
- **Au,Ag含量已归一化。
- 3. 围岩蚀变 与金矿化关系比较密切的蚀 变有硅化、绢云母化和绿泥石化。

裂隙中的自然金 (白色矿物为自然金) ×300

世色數束子彙 (直流象) 象中发亮部分为沿早期黄铁矿 裂隙充填的含银自然金(NB) 被黄铜矿(CP)包含, ×300

全元素X 射线象

硅化主要分布于东西含矿带, 充填或交代 碎裂岩、压碎岩、并伴有金矿化。绢云母化主 要分布于含矿角砾岩带, 显微针状、鳞片状的 组云母化岩石中见有含金黄铁矿等金属硫化物。 含矿带及其两侧之闪长岩中均见有程度不同的 绿泥石化,沿岩石节理、裂隙不规则分布。含矿 带膨大部分、含矿带及其两侧闪长岩中绿泥石化 亦发育。

成矿规律的初步研究

1. 金质来源 水泉金矿与闪长岩关系密切, 主要矿体均赋存于闪长岩内。岩体人工重砂中见 有自然金。不同岩石微量金分析以闪长岩中含金 丰度值高,为0.11148/1(表3)。矿区主要含矿部 位9~11勘探线-60m中段(见图2)闪长岩含 矿带宽50m,含Au平均1g/t。

岩石名称	样 数	金平均含量
白云岩	4	0.0031
炭质板岩	1	0.0030
闪长石	7	0.1114
花岗魔岩	4	0.0950
钾长石 (脉)	1	0.0056
早期石英脉	ı	0.0162
晚期白色石英脉	1	0.0040
煌瓶岩	1	0.0044

* 本队综合室杜长安、王盛君采样,辽宁地矿局中心实 验室分析,1982。

Ħ	硫同位素測定结果*(‰)		
样号	δS14	样号	δS)*
4 TZ-1	-6.04	4 TZ— 9	- 6.25
- 2	- 6.77	- 10	- 6.82
- 3	- 5.84	- 11	- 5.22
- 4	- 5.20	- 12	- 6.56
- 5	-6.09	- 13	- 6.00
- 6	- 6.54	- 14	- 5.85
- 7	-5.95	- 15	- 5.91
- 8	-5.99		

* 沈阳地质矿产研究所测定, 1982。

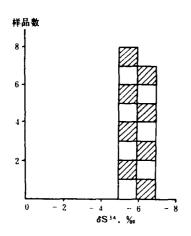


图 4 硫同位素的分布

矿区硫同位素測定资料 (表4,图4)表明, δS³⁴ 值接近陨石值,且均为变异小的负值。据王 义文^③研究认为,遭到溶蚀和褐铁矿化,黄铁矿中的硫呈硫酸盐形式转入溶液中:

FeS½ + S³² O₄ ⇒FeS½ + S³⁴ O₄ 导致硫化物中δS³⁴ 降低。该区矿体在河床下面,矿石中黄铁矿的硫易遭溶蚀,使δS³⁴ 降低,推测未遭溶蚀之原生黄铁矿δS³⁴ 可能为不大的正值。该区硫值具有火山岩特征,金、硫同源,可能都是来源于上地幔之闪长岩浆。

- 2. 容矿构造 主要有两期。第一期,燕山早期闪长岩侵位之后,由于构造应力的作用,形成东西向节理裂隙带,为热液活动、Au的迁移富集形成有利的容矿空间,SiO₂,Fe,S,Cu,Au等充填裂隙,形成早期含矿带,即石英网脉带。第二期是燕山晚期,由于花岗斑岩的侵入,使早期构造复活,部分石英脉破碎成构造角砾岩带,构造角砾岩带是良好的容矿构造,是矿液沉淀的场所。
- 3. 花岗斑岩的富集作用 花岗斑岩中含金量亦较高,平均为0.09508/t (见表3),仅次于闪长岩,可作为成矿的金质来源和矿化作用的热源,有利于金的活化、迁移和富集。该区主要矿体都赋存于花岗斑岩附近的东西向含矿带内,特别是富矿 (品位508/t±) 都靠近花岗斑岩体,距花岗斑岩体远者,金有变贫的趋势; 远离花岗斑岩的矿化带,石英网脉带再宽,含金品位低,难形成工业矿体。
- **4**: 成矿阶段 该期成矿作用大致可分为 4 个阶段。

第一期石英一黄铁矿阶段:在动力变质作用下,闪长岩中的角闪石和斜长石转变为绿泥石和绢云母,将有SiO₂释放出来。据Π. H. 齐尔文斯基^①的资料,普通角闪石转变为绿泥石时,SiO₂含量由45.83%降为31.66%;斜长石(Ab70)转变为绢云母时,SiO₂含量由60.83%降为50.88%。从闪长岩中析出的SiO₂和原岩中携带的S,Au,Cu等,由于结晶温度的差异,形成含金黄铁矿

③ 王义文: 硫同位素研究在金矿床中的应用, 1980。

④Π·H·齐尔文斯基:火成岩、变质岩、沉积岩的主要矿物的平均化学成分,1957。

石英脉(照片 4)。爆裂温度^⑤石英包裹体为335~355℃,黄铁矿为170~260℃。石英分布于脉壁,黄铁矿分布于脉中间,金呈次显微状分散于黄铁矿中。

照片 4 脉 早結晶的 石英(Q)空隙 被晚结晶的黄铁矿充填(Py)

第二期石英一黄铁矿阶段: 是金的主要成矿阶段。花岗斑岩的侵入所带来的热源和构造应力作用, 使第一期黄铁矿破碎, 热液沿黄铁矿裂隙充填交代, 形成粒状、脉状、树枝状自然金。

第三期石英脉阶段:主要为晚期白色石英脉, 分布于花岗斑岩体及其附近构造带中,含金较低, 微量金为0.00408/t(见表3)。这期石英脉是辉 钼矿形成阶段,可圖出钼矿体。

第四期碳酸盐化阶段:主要形成方解石脉, 方解石均一温度为120~130℃。

5. 成矿过程 笔者初步认为,本区的早期东西向构造带为闪长岩的侵位创造了有利的条件。该带的继续活动,又切断了闪长岩体。在构造运动产生的温度、压力作用下,闪长岩带来的SiO₂等在适当的条件下形成石英脉,构造的继续活动,石英脉又遭破坏,这时Au和其他金属硫化物,沿节理裂隙运移、沉淀,在闪长岩体内的东西向含矿带形成大量含金石英网脉。

后期花岗斑岩侵入,使石英网脉中的 Au 再

次活化,花岗斑岩脉携带来的Au 也参与了成矿过程,在角砾岩带中富集成工业矿体。

矿床属中-低温热液型金矿床。

6. 矿床分布规律 矿带的分布与熔浆演化密切相关。该区燕山期的侵入活动,有由中性向酸性演化的趋势。水泉岩体由闪长岩而花岗斑岩,老虎洞岩体由角闪二长斑岩而花岗斑岩,营盘岩体由花岗闪长斑岩而花岗斑岩。

在矿种上,一般花岗斑岩体及其内接触带为 钼矿化,外接触带和围岩为铜、铅、锌、金和银 矿化。

矿床(点)受东西向构造和北东向(华夏系)构造的复合部位控制。区域内的水泉金矿床,盘道沟、影壁山矿化点,以及与金有关的老虎洞、营盘银矿床、均产于这种构造的复合部位。

含矿带内石英脉密集和出现角砾岩带的部位, 常出现富矿体。工业矿体多富集于含矿带内而又 靠近花岗斑岩的部位; 经多次活动的构造带含金 富。石英脉中金属硫化物增多者金富,黄铁矿比 黄铜矿、辉钼矿中含金富(表5)。

矿物	样数	Au	Ag
黄铁矿	9	36.7	127.7
黄铜矿	6	2.7	79.1

12.4

59.0

单矿物中金银的平均含量 ⁶ (g/t)

辉钼矿

7. 找矿标志 有利的构造部位、石英脉密 集区、金重砂异常和黄铁矿化的出现,可做为本 区的找矿标志。

本文在撰写过程中得到张家炳总工程师的指导;金的赋存状态研究,蒙崔笑梅、赵海鹏、杜 长安和王盛君工程师的协助;刘克成和刘士兰同 志清绘附图,在此一并致谢。

^{*}本队综合室杜长安、王盛君采样、核工业部北京铀矿 地质研究所分析,1982。

⑤辽宁省地矿局中心实验室测定, 1982。