新型泥浆处理剂(CHPAN)粉剂的室内

试验与研究

刘香林 执笔

(湖南省地矿局416队)

随着钻探技术、特别是石油钻井技术的发展,优质泥浆护壁洗井的研究越来越显得重要,其中一个很重要的趋向是研究粉剂处理材料。国外已研制成功并商品化的高级泥浆处理剂有上百种,国内近十多年来投入市场的处理剂也有几十种,但具有高效、综合性能的处理剂尚不多。如:HPAM(部分水解聚丙烯酰胺)、HPAN(部分水解晴纶废丝)、聚丙烯酸钠、CMC和速溶CMC、KP共聚物等粉状处理剂,它们虽各有其特点,但综合性能不强,需要几种处理剂并用,因而不便于使用。

1982年,我队根据HPAM—HPAN联合 处理泥浆的原理,研制出HHPAN (胶体水解 高分子聚丙烯腈) 泥浆处理剂。经七个地质队、 上百个钻孔的应用, 证明它具有一剂多能的特 点,对泥浆有提粘、降水、改善选择性絮凝和抗 钙能力, 水溶性良好, 深受现场欢迎。但这种泥 浆固相含量低 (2~5%), 运输、贮藏均不方 便。为此,我们进行了水解高分子聚丙烯腈钙盐 的研究。在近一年的时间里, 共完成了41次产品 配方优选试验,110次溶解性能对比试验(与 HPAM, CPAN, CPA, KP, 改性魔芋, 聚丙烯酸钠等粉剂对比),213次室内处理泥浆试 验(与目前应用较广的国产泥浆处理剂——高粘 速溶CMC, HPAM, CPAN, CPA, KP, 改性魔芋、聚丙烯酸钠对比), 收到了较好的效 果。试验证明, CHPAN具有以下优点:

- 1.生产工艺简单,所需设备少,建厂投资少、时间短。
- 2. 除具有HHPAN胶体处理剂的处理效果外,还提高了抗盐、抗钙能力。

- 3.运输、贮藏; 使用方便。干粉可直接撒入 泥浆, 亦可配成10%的水溶液加入泥浆。
- 4.处理泥浆的材料成本低,至少可不加 CPAN,材料成本约降低一半,与HHPAN 胶体比较,材料成本下降40%左右。

CHPAN的质量指标

鉴于CHPAN是一种新品种,尚没有一套固定的质量标准和检验方法。本次质量检验大部分是采用CPAN(羊毛下脚料钙盐)的质量标准和测试方法①(1)和PAM(HPAM)质量标准与测试方法②(2),并参考了速溶CMC③(3)的部分标准,同时自己还制订了一部分规定。

1.溶解时间的测定和对比 溶解性能是泥浆处理剂的一项重要指标。如果产品易溶,就可省去现场的溶解设备,节约时间。但一般高分子泥浆处理剂经中温或高温干燥后,常部分地发生分子间的内交联,造成难溶或不溶。在研究 CHPAN的过程中,也同样遇到了这个问题。后经多次试验,克服了某些因素的影响,使新剂获得了良好的溶解性,它的可溶性能与其他产品的对比结果列于表1。

从表 1 看出, CHPAN的溶解速度比CPAN与聚丙烯酸钠差, 但比其他几种均好。

①华北石油管理局钻进工艺研究所泥浆室: 水解聚丙烯 腈钙盐(CPAN)质量标准及测定方法(审议稿),1984年

②山东大学化学系: 钻井泥浆用聚丙烯酰胺 (PAM) 及其部分水解聚丙烯酰胺 (HPAM) 的质量标准, 1984年

③速溶CMC研制组: 有关速溶CMC质量标准及测定方法的补充说明、1982年

名	幣 解 时 间 (小时)			
及产地	HPAM标准	实测	自定标准	备 注
HPAM (牡丹江)	1 /万浓度<2.0	3.5		分子量300万水解度25%
CPAN (河南)		0.5		
聚丙烯酸钠 (长春)		0.5	•	
CPA (江 苏)		3.5		一个
KP(福建)		2.0	0 16	
改性魔芋 (中南矿院)		4.0		溶解: 魔芋: NaOH = 5:1
CHPAN (416队)		1.5	5/万<3.0	

- * 试验浓度皆为万分之五,預干燥的样重皆为0.125克,溶解温度全是30℃。
- 2. 外观、细度、造浆量 CHPAN是细度为100目, 外观能自由流动的粉末, 二者均合 乎质量标准。其造浆率见表 2。

	. 1	. 菜	= :	表		表	2 *	
	液	质量	指标		A.		34 -	
种	类	自定标准	实测量	1_	备		注	_
去离子	k 浆液	. 300	475	}	7	↑	样	
4 %的1	盐浆液	130	135		4	个	样	
饱和食品	上水浆液	120	128		4	1	样	
HS TH PLE	-777 // (4	120	120			<u> </u>	17	

* 造浆率按线性回归法. 用E-5100计算机计算. 检测方法参见@中的O.C.M.A.标准DFCP-7标准。表中浆液单位是米³/吨。

从造浆量测定数据可知,CHPAN的去离

子水造浆率较高,比高粘速溶CMC实测高100~200米¹/吨。

3. 其他理化指标 CHPAN的分子量为 30~40万, 水解度为 60~70%, 总含钙量12~ 16%, 纯度大于70%, 游离单体为零。

CHPAN处理泥浆的性能

1.各种处理剂对淡水泥浆性能的影响 试验的原浆系用山东高阳土25克,经60~70℃干燥3小时后,加分析纯无水碳酸钠1.75克,去离子水500毫升,用600~700转/分搅拌机搅20分钟,加盖静置24小时,加处理剂(配1%浓度)再搅,并测其性能。各种处理剂对泥浆性能的影响见表3。

泥浆性/触对比划	泥	浆	性	Alt	对	比	7
----------	---	---	---	-----	---	---	---

表

处	理	桐		泥 紫	粘 度 和	切力	API失水	(毫升/3	0分钟)
名	称	加量 (ppm)	视粘度 (壓泊)	塑性粘度 (壓泊)	动切力(达因/厘米)	静 切 力 (达因/厘米 ²)	HPAN 标准	自定标准	实 测
原、	浆	0	12.5	5.5	61.32	43	17 ± 1	15	15
CHP	AN	300	23.5	11.5	1.22	38		_12	10.2
高粘速熔	ĊMC	30 0	12.5	7	56 ·	33		Ι,	10
C P	A	300	29.75	7.5	227	23.4		1	- 13
K P	•	300	18.25	6.5	120	97			15.2
CPA	N	300	12.5	. 8	46	12.7	1		12
HPA	i N	300 -	18.75	7.5	117	89	<12		12
聚丙烯	酸钠	300	12	9	31	10.2	}	1	10.8
改性療	【芋*	300	17.75	8	99	84			16

^{*} 魔芋: Na OH = 5:1

试验表明,CHPAN处理泥浆的API失

水与高粘速溶CMC相当,但提粘比其他处理剂

强 (CPA除外)。在淡水泥浆中,当上述处理剂达到API失水为12毫升/30分钟时,其加量应分别为 (ppm: 高粘速溶 CMC—200, CHPAN—200, CPA—400, KP—400 (API失水达15毫升/30分钟), CPAN—300, HPAM—300, 聚丙烯酸钠—200, 改性魔芋—2000 (API失水达25毫升/30分钟)。可见,达到同样的API失水指标, CHPAN的耗量等于或低于其他处理剂。

2. CHPAN干粉加量对淡水泥浆性能的 影响 表 4 是在原浆中加入不同量的 CHPAN

干粉处理剂后测得的泥浆性能数据。所配泥浆体积为每份500毫升,原浆中固相含量为 3克/100毫升。具体操作方法是:用高阳土(60~70℃干燥3小时)15克,加无水 NaOH1.05克,去离子水500毫升,配成5个基浆,用700~6000转/分搅拌机搅20分钟,加盖静置24小时,再搅拌5分钟测原浆性能,并将其中四个基浆分别按表4加入处理剂,搅拌20分钟,老化24小时后再搅拌5分钟。测出各种性能数据②。

从表 4 数据看出,只要在原浆中加入少量 CHPAN干粉剂,就会使泥浆性能发生明显变

不同CHPAN干粉量的泥浆性能表

表

干粉加量	视粘度	塑性粘度	静切力	API失	水 (毫米/30分钟)	
(克)	(厘泊)	(厘泊)	达因/厘米2	CPAN标准	自定标准	实 捌
0	5.25	3	10	25 ± 2	25 ± 2	23
0.625	12.75	9.5	5			9
1.25	23.75	17	10			8
1.875	34.75	24.5	15		·	7.6
2.5	45.5	29.5	20	加CPAN5克/升<10	加CHPAN5克/升<8	7

化:另外,从表中数据计算得知,当API失水达到CPAN标准10毫升/30分钟时,在每升泥浆中CPAN加量应为5克,而CHPAN则只需0.3~1克,用量可比前者节省80%。

3. 对 4 %食盐泥浆性能的影响 参照②中的方法,将已干燥的安邱土44克, NaHCO₃

1.2克, 食盐16克, 水400毫升, 配成 5 个基浆, 搅拌与静止等操作规程同上述 2, 处理剂加量和 有关数据见表 5。

据表 5 试验数据,通过计算机计算,当API 失水 < 5 毫升/30分钟时,每升泥浆中CHPAN 应加11.6克,比CPAN抗盐能力强得多。

不同CHPAN加量对盐水泥浆影响

表:

处理剂加量 视粘度		塑性粘度	动切力	静切力	A P·I 失水 (毫升/30分钟)			
(克)	(厘泊)	(厘泊)	(达因/厘米²)	(达因/厘米²).	CPAN标准	自定标准	实 测	
0	3,25	3	2.5	5.1	50 ± 3	50 ± 3	52.5	
3	14	10	40.8	15.3			8	
4	20	12	81.7	12.7		1	5.5	
5	26.75	22	48.5	15.3			1	
6	30	29	10.2	17.8	CPAN加 15克/升<15 ·	CHPAN加 15克/升< 5	3.5	

4 抗钙能力比较 试验所用原浆采用高阳 土配制,含固量 5 克/100毫升。所用HPAM的 分子量为300万,水解度25%。试验用魔芋粉: NaOH=5:1,在50℃条件下搅拌 6 小时。各 种处理剂对泥浆性能影响列表于表 6。

由表 6 可见, CHPAN 有较好的抗钙能力,

在用水泥护壁后,可不更换原用泥浆,稍加调整 后仍可继续使用。

5. 絮凝能力比较试验 絮凝能力是泥浆处理剂的另一重要指标,但其检测标准目前国家尚无统一规定,只能暂用我们自己拟定的标准。方法是: 往100毫升带具塞量筒内,加清水90毫升,

处理 剂 名 称	视 粘 度 (厘泊)	型性粘度 (風泊)	API失水 (毫升/30分钟)
高粘速溶CMC	6 (35)	5 (14)	33 (11)
CHPAN	11.75 (30.5)	6 (17)	44 (9)
CPA	9,75 (17.75)	5.5 (13)	61 (10)
к Р '	9.25 (22.75)	3.5 (7)	. 82 (20)
CPÁN	10.5 (8.5)	5 (8)	74 (17.6)
HPAM	18.75 (38.25)	7.5 (7)	62 (13)
聚丙烯酸钠	9.75 (7.75)	4.5 (8)	63 (13.6)
改性魔芋	13 (53)	6 (11)	88 (30.4)

* 分别用各种处理剂对含CaCl, (0.5%) 及含水泥 (5%) 的泥浆进行处理, 处理剂加量均为1000ppm。表中前面的数字代表CaCl, 浆液的性能, 后面(括号内)的数字代表含水泥浆液的性能。

不同	处理	क्यां १	W 25	14	能事
-1,1-1	ᄍ	, ניזנ	74 ME	ıx	RE-4R€

_	-
•	•

处理剂	l 分钟絮凝物 沉降体积*	1 小时絮凝物 沉降体积*		
名 称	(電升)	(毫升)		
高粘速溶CMC	14	13		
CHPAN		15.5		
HPAM	15	14		
CPA	15	14		
KP	. \	13.9		
聚丙烯酸钠	13	12		

* 在量简里絮凝物沉降高度与体积量 (毫升) 成正比, 这里以体积表示。 红砖粉10克 (过100目筛),摇匀后加处理剂50 ppm,再加水至100毫升,最后倒转10次,静置,观察1分钟和1小时后固体絮凝物界面的高度。絮凝物界面越高,说明红砖粉沉降快,絮凝能力强。就是因为砖粉被高分子处理剂吸附、架桥絮凝成团状物,从而加速了沉降率。

试验说明CHPAN絮凝能力大于HPAM和CPA、KP、髙粘速溶CMC。

6. 经济性比较 经计算,配制1米,泥浆, 耗用各种处理剂的价格为: CHPAN2.1元, HHPAN3.0元,每米,HPAM—HPAN泥 浆成本4.2元。可见,使用CHPAN在经济上 是合理的。

用金属碳化物包覆金刚石 的研究取得新进展

中南矿冶学院研究生何晓军同志,在袁公昱副 教授的指导下,对天然金刚石、人造金刚石以及金 刚石聚晶体进行了包覆金属碳化物的研究试验工作,并取得了一定成效。这种新包覆层的特点是, 覆层与金刚石之间属化学结合,覆层成分由外到内逐步过渡,覆层结构均匀、致密。有覆层的金刚石

单晶抗压强度、抗冲击强度、热稳定性、导电性以及同粘结材料的结合强度(镶嵌强度),均有不同程度的提高。目前已研制出十几个品种的覆层金刚石,正在同中南冶金地质金刚石厂、桂林金刚石厂等单位合作进行应用试验。

(中南矿冶学院探工教研室 王开志 供稿)