得一些定量的, 更为确切的认识:

- (1) 在热液期四个矿化阶段中、矿化强度 最大者既不是分布最广的第一阶段贫金石英脉, 也不是金品位较高的第四阶段,而是第二阶段黄 铁矿石英脉。实践证明、凡有第二阶段矿化叠加 地段、均能形成较好的工业矿体, 在有第二、三 阶段矿化叠加部位,则常形成富矿柱;相反缺乏 第二、三阶段矿化叠加的地段、常形成矿化减弱 带或无矿地段。
- (2) 各阶段矿化特点是: 第一阶段为分散 矿化(矿化发育程度较大但有用组分分布太散), 第二阶段为分段集中矿化、第三阶段为局部集中 矿化。
- (3) 矿脉中富矿体总的矿化特征是热液第 一阶段矿化强度相对减弱、第二、三、四阶段矿 化强度相对增强。但比较而言, 矿脉上部 (340米 标高以上) 表生富集因素的影响较大,而矿脉下 部 (230~220米标高以下) 热液第三阶段的矿化 强度增强。前者反映了表生富集带的发育水平和 影响、后者反映了热液矿化的逆向分带特征。

根据上述规律、我们认为查明第二、三阶段 矿化叠加地段, 是矿床深部预测的关键。我们曾 结合控矿断裂特征(形态上的舒缓波状和产状上 的陡缓变化等)及成矿各阶段断裂脉动活动的性 质、预测在矿床深部矿化减弱带下面还有有利于 第二阶段矿液充填的另一矿化富集带出现。这个 观点正在得到实践证实。

结 论

(1) 多阶段成矿作用中的矿化强度,是指 每一阶段矿化在整个成矿过程中相对作用的大 小、计算时要考虑它们各自的品位在整个成矿作 用中的代表权, 而不能单纯根据各阶段品位的高 低来衡量。

- (2) 采用筛分分析从多总体联 合的概率分 布中区别出单一总体的方法、前人早有论述。本 文在于利用筛分所得各成分总体的有关参数、结 合地质实际提出了多阶段叠加成矿的矿化强度计 算公式,并认为它对于非叠加的多阶段成矿的矿 化强度计算仍然适用。
- (3) 根据本文提出的计算公式和方法,可 以定量地比较矿床中各阶段矿化强度的相对大 小、有助于确定成矿期或成矿阶段的主次及其矿 化特点、查明不同地段矿化强度的差异及矿化局 部富集规律,如结合各期、次控矿构造活动性质 分析, 可对矿区深部盲矿体(段)的预测起一定 的指导作用
- (4) 严格地说, 概率图的使用尚属一种半 定量性质,但它具有简便易行的优点,并能引导 地质观察由定性向定量发展。

王作期间,得到武汉地质学院赵鹏大、卢作 祥、范永香、胡旺亮及某金矿孔庆存、宫润潭等 同志热情帮助, 在此表示感谢:

主要参考文献

- 1 表见齐等。矿床学、地质出版社、1979
- 2 北京地质学院等、找矿勘探地质学。中国工业出版 H. 1961
- 3 长春地质学院矿床勘探教研室、矿床勘探、地质出 版社, 1979
 - 1) 赵鹏大等。矿床统计预测 (武汉地质学院教材)。
- 〔5〕 A・L・ 辛克莱 (赵鵬大等译),概率图在矿床勘探 中的应用、地质出版社、1981

剖面对比的移动相关分析

南京大学地质系 武耀诚

剖面对比是地质工作的基本方法之一, 它包 括的内容十分广泛、诸如地层剖面对比、勘探线 钻孔柱状图的对比以及坑硐工程中系统采样的对

比等。只有在正确对比的基础上,才有可能探讨 沉积作用、古地理、构造运动、或圈定矿体、编 连地质界线,从而总结区域地质和成矿规律。

以往的剖面对比工作,大多是借助于标志层、 化石、沉积旋回等对比标志、用肉眼观察的方法 完成这种匹配。有时为了解决勘探线上钻孔间的 对比,还可列出一个简表或绘制曲线图(或直方 图),通过上下移动寻求最佳匹配。如果对比标志 十分明显,那么这种方法也就够用了。然而,实 际工作中往往缺乏明确的对比标志,这就常常使 地质工作者左右为难, 甚至束手无策, 因而不得 不靠主观经验作出判断,其结果很容易发生较大 偏差。这种情形尤其在某些勘探程度较低的矿区, 在编连勘探线剖面图时经常出现。

本文所介绍的方法,是为剖面之间的对比提 出数字指标,使对比工作定量化,充分利用电子 计算机的优点, 在反复多次的对比结果中寻求最 优匹配方案, 提高剖面对比的可靠性。

关键的步骤是对比指标的选择; 加权相关系 数的算法: 剖面的移动和削头截尾相关系数的计 算以及对比结果的地质解释。

对比指标的选择

剖面对比应该选择什么样的指标, 这取决于 剖面内容和对比目的。一般应选择那些在时间上 变化灵敏,在空间上相对稳定的因素,作为计算 相关系数的指标。对于拥有多变量数组的 剖面来 说,既可以根据地质上的需要主观确定,也可以 预先经多元统计分析,对变量进行优选,选出某 些指示性变量作为对比指标。

如宁芜中生代火山岩地层,由12个实测地层 剖面的1319个光谱样品分析结果, 经R 型因子分 析、簇群分析及统计特征数的综合研究表明:

1.微量元素 Ti、V 的含量, 由老到新逐渐增 高,晚期明显降低,呈规律性变化,而Cu、Pb、 Ba等元素无明显变化规律;

2.Ti、V的变异系数一般为30~40%, 最高 60%, 而Cu、Pb、Ba的变异系数一般都在100% 以上,最高达350%;

3.R 型因子分析的 F_2 因子, Ti, V密切相关, 且与Cu、Pb、Ba相排斥, 蚀变微弱的火山岩样 品在该因子上的得分最高。

因此,Ti、V的含量反映了该区火山岩浆原 始组分特征,而Cu、Pb、Ba则是热液作用的产 物,其中Ti的规律性比V更为明显。所以,为解 决该区火山岩地层的划分和对比、主要应选择Ti 的含量作为对比指标。

除选择单一变量作对比指标外, 还可采用组 合变量(如因子计量),应根据需要灵活应用。

对于只有定性描述资料,而缺乏数字指标的 剖面 (如趾层剖面),可利用剖面的文字描述作适 当转换,算出定量指标后进行计算对比(转换方 法见实例 2)。

加权相关系数的算法

实际工作中,我们测得两个剖面某一指标的 有序数组,分别记作X与Y,其N组数值(x_i , y_i) (i = 1, 2, ..., N) 之间,可用相关系 数表示两个剖面线性相关的密切程度。

相关系数的计算方法,有以下几种情形:

1.设N组观测数据 (x1, y1),(x2,y2),…, (x_n, y_n),有相关系数

$$r_{xy} = \frac{\sum_{i=1}^{N} (x_i - \bar{x}) (y_i - y) / N}{\left[\sum_{i=1}^{N} (x_i - x)^2 / N\right]^{1/2} \cdot \left[\sum_{i=1}^{N} (y_i - y)^2 / N\right]^{1/2}} \approx S_{xy} / S_x S_y$$
(1)

式中 S_{xy} 为 X 与 Y 的协方差, S_{x} 、 S_{y} 分别为 x_{i}^{*} 、 y_{i}^{*} 代入 (1) 式得 X与Y的均方差。

若数据作标准化转换, 如

$$x_t^* = (x_t - \bar{x})/S_x$$

 $y_t^* = (y_t - y)/S_y$

则由于标准化数据的均值为零,方差为 1, 故将 x, 和y, 具有相同权时, 则有

$$r_{xy} = \sum x_i^* y_i^* / N \tag{2}$$

 $2. 若 N 组观测数据(x_1, y_1), (x_2, y_2), \dots$ (x_N, v_N),计算加权相关系数, 当每组数据中的

$$S_x = \left[\sum_{i=1}^{N} (x_i - \bar{x})^2 f_i \right]^{1/2}$$

$$S_y = \left[\sum_{i=1}^{N} (y_i - \bar{y})^2 f_i \right]^{1/2}$$

式中 $f_i = P_i / \sum_{j=1}^{N} P_j$, P_i 为频数, f_i 为频率 (即 权系数)。

$$x = \sum_{i=1}^{N} x_{i} f_{i}$$

$$y = \sum_{i=1}^{N} y_{i} f_{i}$$

对标准化数据有

$$r_{xy} = \sum_{i=1}^{N} x_{i}^{*} y_{i}^{*} f_{i}$$
 (3)

3. 若 N 组观测数据(x₁, y₁),(x₂, y₂),...,(x_N, y_N),其中每组数据中的x_i和y_i具有不同权时,有

$$f_i = P_i / \sum_{i=1}^N P_i$$

$$f_i' = Q_i / \sum_{i=1}^N Q_i$$

式中 P_i 、 Q_i 分别为 x_i 与 y_i 的频数; f_i 、 f_i ′分别为 x_i 与 y_i 的频率。

$$r_{xy} = \frac{\sum_{i=1}^{N} (x_i - x_i) (y_i - \hat{y}) (f_i f_i^{-1})^{1/2}}{\left[\sum_{i=1}^{N} (x_i - \hat{x})^2 f_i\right]^{1/2} \cdot \left[\sum_{i=1}^{N} (y_i - \hat{y})^2 f_i^{-1}\right]^{1/2}}$$
(4)

对标准化数据有

$$r_{xy} = \sum_{i=1}^{N} x_i^* y_i^* (f_i f_i^{(i)})^{1/2}$$
 (5)

当 $f_i = f_i'$ ($i = 1, 2, \dots, N$) 时,(5) 式同(3)式; 当 $f_i = f_i' = 1/N$ ($i = 1, 2, \dots, N$)时,(5) 式同(2)式。

因此, (4)、(5) 式为计算加权相关系数的一般形式。

剖面的移动

表 1 给出两个假想剖面的数据,以此为例,在图 1 中用45 斜线表示剖面移动所对应层位的相关图示。层位的对应是沿45 斜线,以短剖面 (Li 剖面) 为基准,计算其在纵、横坐标轴上对应层位之间相关系数的。随着45 线沿纵轴的上下移动,可算出一组相关系数值(标注在图 1 45 斜线上)。

	L ₂ 削 [ti	L, 韵 黄				
믾 당	指标 (%)	厚度 (米)	是男	指标 (%)	厚度(米)		
15	2.5	3	10	2.0	1.5		
11	4.0	2	9	3.5	2.5		
13	5.0	3	8	6.0	3.0		
12	7.0	1	7	9.0	1.0		
11	2.0	2	6	1.0	0.9		
10	30.0	1	5	40.0	0.5		
9 60.0		1	4	80.0	2.0		
8	50.0	อ์	3	30.0	0.4		
7	80.0	3	2	8.0	0.8		
6	20.0	1	1	6.0	0.3		
ลี	10.0	2					
. 4	9.0	1	1				
3	15.0	3					
2	6.0	4					
1	7.0	i					

由于每移动一个步长,各层位的标准化数据和权系数(该例以厚度为权)都在变化,故必须应用(5)式或(4)式计算相关系数。经显著性检验后,由局部相关系数的最大值,可指示Li剖面对于Li剖面的最佳匹配位置。

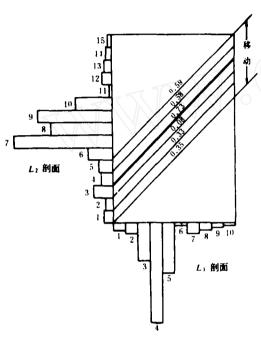


图 1 剖面的移动相关

图 1 指示出两个假想剖面的最佳匹配层位为 L₂剖面的 4 ~ 13层与L₁剖面的 1 ~ 10层相对比, 其相关系数为0.73(45 粗斜线所示),显著性检验值在 5 % 信度下为0.63,在 1 % 信度下为0.77, 故为较显著,而不是十分显著

剖面削头、截尾移动相关

自然界的地质剖面,往往存在岩层尖灭、相变,或因构造变动、侵蚀作用而破坏了原始剖面的正常层位。在这种情形下,只采用简单的移动匹配,显然就不够用了。为此,本文提出剖面的线性分割对比法,用依次改变地质剖面线性分割对比法,用依次改变地质剖面线性分割起始点和终止点的方法(下称削头、截尾法人下称削头、截尾法人下,其量性匹配的局部相关系数量大值为0.88.故上分显著。图3为五次削头移动相关图示,其最佳匹配的局部相关系数量大值为

0.97, 1%信度下的显著性检验也十分显著

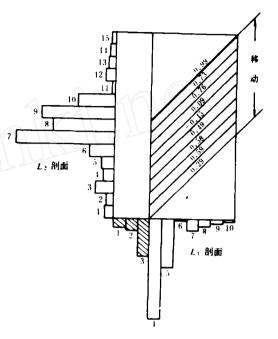


图 2 Li 剖面三次截尾移动相关 (阴影部分表示Li 剖面从尾部截去三层)

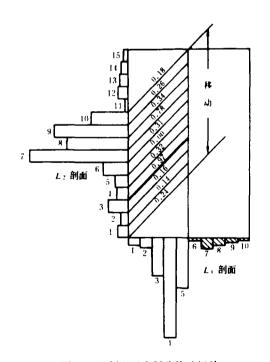
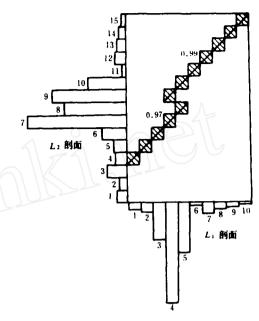


图 3 Li 剖面五次削头移动相关 (開影部分表示Li 剖面从头部削去五层)

L(剖面每截尾(或削头)一次、都计算一组 移动加权相关系数,当规定最低匹配长度为5时, 计算相关系数的总次数为

 $M \sim (L_2 + 4) \cdot (L_2 + 3) \sim (L_2 + L_1 + 1)^2$ 式中 M为两个剖面对比所需计算局部相关系数 的总次数:

L₁ 为L₁ 剖面(短剖面)的长度(层数);


L2为L2剖面(长剖面)的长度(层数)。

本例 $L_1 = 10$, $L_2 = 15$, 故总共计算加权相关 系数96次,这96个相关系数可以展布在由两个剖 面为直角坐标所构成的二维平面内,每一条45 斜线有一个相关系数与之对应, 45 斜线的长度 反映出匹配层位的数11,并各有其不同的起始点 和终止点,从而构成一个相关系数面。图 4 表示 从96个局部相关系数中,择优选出的两条具有最 大相关系数的45 线,图中阴影方格的数目指示 匹配长度,其在纵横坐标上的投影指示对比层位, 它们的相关系数分别为0.97和0.99。

对比结果的地质解释

由图1、4可以看出,单纯的移动相关与削 头、截尾移动相关的最优匹配结果十分接近。但 前者不够精确,只作出概略性对比,其显著性检 验仅满足 5 % 信度的要求,而后者十分显著,均 满足 1 % 信度的要求。

图 4 表明, 4 剖面的 4~5层既可以与42 剖 面的7~8层匹配(五次削头移动相关),又可以 与L2剖面的 9~10层匹配(三次截尾移动相关), 这一现象提供了两种可能的地质解释: 一是L: 剖

削面对比最佳匹配图示

面由于断层(或其它原因)造成7~8层与9~ 10层的重复(即 7 与 9 、 8 与10 为同一层位);二 是4. 剖面有地层缺失(缺失) 个与4. 剖面 7~8 层或 9~10层相当的层位)上述两种可能的地质 解释都是在首先肯定其中一个地质剖面为正常层 序的前提下去解释另一个剖面的。如果两个剖面 都非正常层序,那就另当别论了 实际工作中, 只要根据若干剖面的对比和地质观察,选择一种 合理的地质解释是不难做到的

本例假设口:剖面为标准剖面,则口:剖面有层 位缺失,形象的对比图见于图 5。

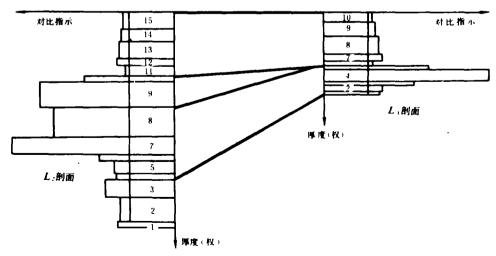


图 5 假设剖面对比结果的地质解释

实 例

例 1 前述宁芜中生代火山岩地层, Ti含量可作为对比指标。现以鲁村一前岗剖面龙王山组第108层至123层为标准剖面, 其中第115层与116层之间为鲁村亚组上段与卜塘亚组下段的分层界限。试与青塘一黄庄剖面作对比, 寻求最佳匹配层位和分层界限。

步骤:

1.对比剖面的原始数据,列于表 2:

					表 2			
	鲁村前岗部	附面	青塘一黄庄剖面					
层号	Ti含量(%)	厚度(米)	层号	Ti含量(%)	厚度(米)			
123	0.44	24.06	11	0.30	2.38			
122	0.45	1.84	10	0.35	1.31			
121	0.425	9.97	9	0.40	2.42			
120	0.40	3.05	8	0.30	2.42			
119	0.47	10.15	7	0.33	5.98			
118	0.45	0.86	6	0.325	3.15			
117	0.45	5.47	5	0.39	7.16			
116	0.425	6.90	4	0.40	8.17			
115	0.40	6.20	3	0.48	10.20			
111	0.47	5.88	2	0.46	12.80			
113	0.45	0.43	1	0.40	21.52			
112	0.41	9.69						
111	0.425	1.86			İ			
110	0.39	8.53		1	Ì			
109	0.35	3.60			ĺ			
108	0.42	22.25						
	<u></u>							

- 2.输入TQ-16机,执行本文的专用程序,约2分钟后获得120个相关系数(包括移动和削头、截尾加权相关系数),经显著性检验,择优选出两个最佳匹配结果,见于图6:
- 3.地质解释见图 7。前人对青塘—黄庄剖面的划分是 1~5 层为鲁村亚组上段, 6~11层为卜塘亚组下段。本文对比结果与前人的划分基本一致, 但在两个段的分层界面上, 可能有地层缺失。
 - 例 2 依据宣城一广德幅 1:20万区测报告

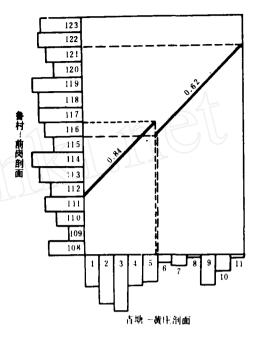


图 6 宁芜地区各村一前岗剖面与青塘一黄庄 剖面削头截尾移动相关最佳匹配图示

的实际资料,对长兴煤山和宣城王胡村的中、下石炭统剖面进行对比。鉴于传统的剖面资料局限于地质观察的文字描述,缺乏分析数据,应用本文提出的对比方法,必须把描述性特征施以数字转换,把定性数据转化为定量指标。具体方法与 步骤如下:

- 1.给出剖面对比的原始资料(摘要)
- 1)长兴煤山剖面

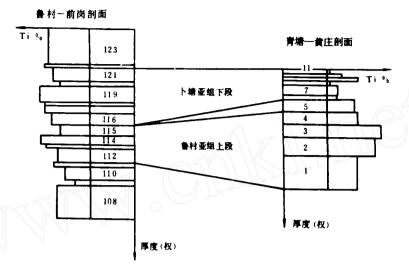
黄龙组 (C2) 88.14米

24 肉红色、深灰色厚层灰岩、产鳞。 5.12米 : (略)

14 灰白色微带红色厚层灰质白云岩。 7.4米 高丽山组 (Cig) 69.70米

13 灰白色薄至中厚层细砂岩。 6.69米

4 黑色页岩,上为细粒石英砂岩,页岩中含蕨类


(略)

植物基干。 3.16米 金陵组 (C₁j) 5.24米

3 黄褐色薄层含云母砂岩,铁质石英砂岩,页岩, 产腕足、螺。 1.66米

(略)

1 黄绿色薄层石英砂岩,含云母铁质石英岩,含

泥砾、夹页岩,产腕足。

1.96米

2) 宣城王胡村剖面

黄龙组 (C2) 63.54米

17 灰白色巨厚层状灰岩,产罐。 9.78米

(略)

- 12 灰色厚层白云岩,灰质白云岩,夹 4 层薄层灰岩,底部为灰白色石英细砾岩,产罐。 9.28米高丽山组 (C₁g) 32.66米
- 11 浅灰带紫色细粒石英砂岩与粉砂岩互层,夹少 量粉砂质页岩。 4米

(略)

- 5 **粉砂岩,石英细砂岩,**页岩,产植物。 1.69米 金陵组(C₁j)6.89米
- 4 灰至灰黑色千枚状页岩夹细砂岩, 产 腕足。 1.98米

(略)

- 灰白色、灰色粉砂岩与石英细砂岩互层,顶底 为含砾砂岩。
- 2.运用数量化理论,把描述性特征转化为二 态变量

以剖面描述的内容为基础,把每一项描述性特征称作一个"项目",在每个项目之下,依据每个特征的不同属性再分"类目",如该例把颜色、层厚、碳酸盐岩结构、化石和岩石基本名称作为五个项目,而灰色、红色、黑色则是颜色项目之

下的三个类目,该剖面共列出 5 个项目,包括16 个类目。对每个对比层来说在 5 个项目上的反映,具体表现在各个类目的取值上,有反映取值为 1,没有反映取值为零。对于某一个项目来说,各类目的反映总和不大于 1,这样列出的原始定性数据表,见于表 3 (只给出宣城剖面)。

如果基础资料较详尽,则项目、类目的划分 还可适当增加。

3. 计算"乘积矩阵"的矢量长度

每一剖面均按表 3 的要求,列出一张二态变量(0,1)的原始数表,以此构成原始数据矩阵X (N行P 列,N 为层数,P 为类目数),乘积矩阵X X 是一个P \times P 阶的对称矩阵,它的每一行表示每种属性普遍出现的程度,其矢量长度表征每种属性与其它属性之间的相关性程度,利用这个指标可以定量表示每个属性的相对重要性,其计算公式:

乘积矩阵
$$B = X'X$$

矢量长度 $V(jk) = \left[\sum_{i=1}^{p} B_i^2 (jk)\right]^{1/2}$

式中 P 为总类目数:

i为某项目:

k 为某项目中某类。

两个剖面矢量长度的计算结果列于表 4。 4.求出各对比层矢量长度线性组合作为对

层		順	色		是「	À.	碳值	收益 岩组	占构	1	Ł	łī		岩	石类	型
병	灰	Ħ	黒	鄊	ф	樽	致密	碎屑	结晶	海相	植物	干茎	碎屑岩	沈质岩	灰 岩	白云岩
17	1	0	0	l L	0	0	1	0	0	1	0	0	0	0	1	U
:	;	:			;		į			;	1	:	1		1	
:	ŀ	1		1	1		1			l i		0:		$\langle \cdot \rangle$		
12	1	o	0	ι	θ	0	1	0	υ	1	0	0	0	0	0	1
11	0	1	0	υ	i	o	U	0	O	0	0	U	(I)	0	0	0
i	;	į	1		i	-	71)\	17:5					:
:	1	i i	1	< '					7:2	;		į			İ	
5	1	0	0	0	1	0	0	0	0	O	1	0	1	0	O)	0
4	1	0	0	0	1	0	0	υ	0	1	0	0	0	1	0	0
i	ì	M	:		. :	1	i	1			į į	1] ;		i	
i	i	1	;		i			1	;	į	1					
1	1	0	0	O	1	O	0	0	υ	0	0	0	1	0	0	0

·			表:
項目	类 !!	官 城 剖 面	长 兴 削 面
	灰 色	19.75	26.10
颜色	红色	5.20	7.28
	黑 色	1.73	5, 10
	摩层	13.68	23.15
提 摩	中 层	12.77	4.21
	幕层	. 2.00	11.92
碳酸盐岩结构	致 密 状	10.82	20.10
	碎 州 结 构	0.00	0,00
	结 晶 结 构	2.00	2.00
	海相化石	11.60	20.10
化石	植物化石	1.00	3.16
	植物干笔化石	2.00	3.46
	碎 屑 岩 .	9.95	11.21
岩石类型	泥 质 岩	7.3 5	5.10
有有失化	石 灰 岩	10.39	16.67
1	白云岩	2.21	6.00

比指标(见表4)

 $Z_i = \sum_{j=1}^P X_{i,j} V_j$

式中 Z,为第i层的对比指标;

xij为第i层第j类目的反映:

V,为第j类目的矢量长度:

P 为总类日数。

两个剖面的对比指标计算结果见于表 5。

5. 对比结果及地质解释

以各层的矢量长度线性组合为对比指标,以 各层的厚度为权系数,算出356个削头、截尾移

	宣城制面			长 兴 剖 面				
层号	对比指标	厚度 (米)	是	对比指标	厚度 (米)			
17	69 -2 3	9.78	24	106.12	5.12			
16	69 • 2 3	10.23	23	106.12	7.65			
15	69 • 23	17.16	22	106.12	5.98			
11	69 - 23	9.58	21	106.12	1.84			
13	45.82	7.42	20	106.12	2.70			
12	61.07	9.28	19	106.12	11.72			
n	27.91	4.00	18	86.02	4.51			
10	27.91	5.60	17	95.47	11.40			
9	27- 1	13.60	16	95.45	11.06			
8	24.45	1.60	15	67.92	12.76			
7	41.86	6.17	11	56.53	7.10			
6	13.86	0.84	13	44.55	6.69			
5	43.86	0.80	12	25.71	12.97			
4	54.59	1.98	11	33.41	2.57			
3	46,29	1.65	10	36.87	11.97			
2	57.97	0,99	9	44.61	7.04			
1	42.47	2.21	8	52.23	6.51			
			7	53.60	1.81			
			6	17.60	10.85			
			5	55.39	6.11			
			.1	25.58	3.16			
			3	72.33	1.66			
			2	42.21	1.62			
			1	72.33	1.96			

动相关系数,优选结果见图8。

由图 8 可见、中、下石炭统的分层界线,计算结果与前人的划分完全一致,获得相关系数为0.83的局部最佳匹配(1%信度下的相关系数临界值为0.68)。而下石炭统金陵组(C1)与高丽山组(C1g)的界线则不一致,其最佳匹配的局部相关系数为0.72(10%信度下的相关系数临界

值为0.81),可靠程度不高。但据此最佳匹配去仔细分析前人划分的地层界线,发现长兴煤山剖面的第4、5层划为高丽山组的依据不足,而宣城王胡村剖面的第4层有腕足化石为依据,故建议将长兴煤山剖面的第4~5层划为金陵组。这样修正后,两个剖面的高丽山组底部地层均夹有一

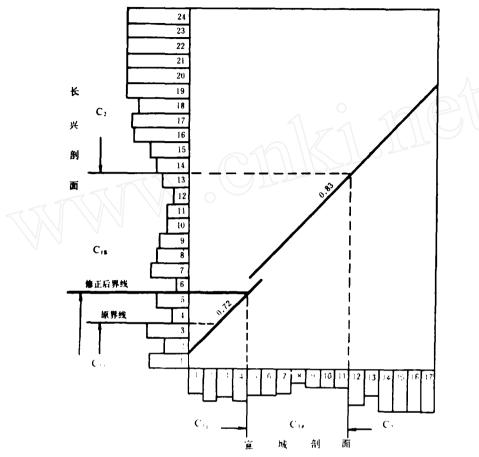


图 8 宣成、长兴中、下石炭统剖面对比最佳匹配图示

层劣质煤,可以更好对比。修正后的界线用粗黑 线表示在图 8 中。

结 语

相关系数是统计数学中一个十分重要的统计特征数,它的实际意义很大。鉴于地质剖面不同层位之间普遍具有时间上的连续性,物质成分上的继承性和空间变化的同步性,因而剖面之间的对比具有丰富的内在信息。应用加权相关系数,特别是当每组观测数据(x_i,y_i)中的x_i和y_i具有不同权时,可以充分提取这些信息。这一方法较之单纯考虑岩石基本名称的"状态"类比(如交叉连带分析等)具有更大的优越性

应用本文提出的方法,根据作者的初步实践, 有以下几点体会:

1. 由于移动相关分析是以两个剖面单层间的

相互对应为基础的,所以两个对比剖面的分层精度必须一致,即比例尺相同,或等间隔系统取样。

- 2.剖面间的对比是两两进行的,一般取长剖面作为标准剖面,通过对短剖面的移动或削头、截尾移动法寻求最佳匹配位置。但如有必要,把两个剖面的位置对调,把长剖面分成数段后作多次对比,同样是可行的。短剖面的长度,一般以只包含1~2个分层界线的一段地层为宜,如有两个以上的分层界线需要对比,则可截成几段,分别对比计算。
- 3.剖面中可能存在着地层的原生尖灭或后期构造破坏,造成地层的重复或缺失,经削头、截尾法可提取有关信息。当某剖面地层发生倒转时,在对比中势必出现显著负相关,此时可颠倒剖面顺序,如获得最佳匹配则可证实倒转层位的存在。