仅有与矿有关的W、Sn、Be 等元素发育,同时伴 有Cu、Pb、Zn、Ag、As 等元素的异常, 地表 仅见出露不大的岩体,反映出高台山岩体大部处 于隐伏状态,其有较大的找矿远景。

至于环状异常的形成机理,初步认为:深源 或壳源形成的酸性或中酸性岩浆,在深断裂和环 形构造控制下,在侵入分异定位过程中,残余岩 浆逐步向中基性演化,并向主岩体外接触带运移 侵位,形成环绕主岩体分布的卫星状小岩体群。 由于岩性的变化、微量元素分布、分配也随着发

生变化。当成矿流体在运移过程中,因外界温度、 压力、地球化学条件不同,边扩散边结晶 3 % 气化高温不活泼元素一般在大岩体内部聚集,中 低温较活泼元素在大岩体外接触带聚集,从而造 成在平面上微量元素分布的水平环状分带现象。

参考文献

- [1] 薛永根 (执笔),物探与化探,1979, No.1,27~34
- [2] 南京大学地质系,个别元素地球化学,1964。

 $14 \sim 68$

[3] 古菊云、地质与勘探, 1980, No5, 1~10

浅谈浙江岩浆岩地球化学特征

浙江省物採队

何汉泉

浙江省位于环太平洋火山活动带内,岩浆活 动频繁而激烈,目前已圈出大小岩体1400多个。 总面积约6000平方公里,占全省总面积的5.9%。 岩浆侵入活动延续时间长,岩性复杂,岩类众多, 从超基性、基性、中性、中酸性、酸性,到碱性, 均有出講,而以燕山期酸性岩类分布量广。内生 金属矿产和部分非金属矿产与岩浆岩存在着成因 联系,因此,对岩浆岩含矿远景及其与成矿机制 关系的地球化学评价, 已成为勘查地球化学的重 要工作之--

笔者对全省187个不同时代、不同岩性的岩体 作了化学成分及微量元素含量统计。本文从地球 化学特征入手,对比元素丰度,谈谈岩浆岩与成 矿的关系。由于以往光谱分析的元素较少,且均 为半定量,因此资料有一定局限性,加之笔者水

平所限,如有谬误,请读者批评指正。 岩浆岩总体地球化学特征

1. 化学成分特征 浙江地区岩浆岩与我国同 类岩浆岩平均化学成分对比结果是: (1)酸性岩硅 值、碱值较高,铝值稍低,基性组分Fe、Mg、 Mn、Ti、Ca含量较低。②碱性岩硅值略高,铝 值和碱值稍低,基性组分Fe、Mg、Mn、Ti、Ca 含量接近。3中性岩硅值、碱值较高,铝值略低, 基性组分Fe、Mg、Mn、Ti、Ca 含量较低。 4 超基性岩硅值近似、铝值、碱值较高、基性组分 Fe、Mg、Mn含量较低,尤其Mg含量很低,为 富铝、富碱、少铁、贫镁超基性岩,MgO/FeO = 1.85, 对Cr、Ni 的成矿不利, 详见表 1。 (未能 取得基性岩岩石化学数据)

浙江岩套岩类与中国岩浆岩类平均化学成分对比表

			样品	1			学员				(ppm						学		
岩		类	敷	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₇ O;	FeO	MnO	MgO	CaO	Na: O	K ₂ O	P ₂ O ₃	H₂O	K 20+Na 20	K ₂ O Na ₂ O	K+Na Mg·Fe·(a·M	MgO n FeO
	¥	浙江			0.295												1.34	1.91	1
3		中国		70.4	0.31	14.48	1.38	1.77	0.08	0.94	1.93	3.77	3.79	0.18	0.65	7.56	1.005	1.18	-
4	**	Mil	30	65.2	9.56	15.82	2.19	2.18	0.19	0.89	1,89	1.20	5.08	0.19	1.25	9.28	1.21	1.17	1
	岩岩	中国	ĺ	1	0.52		! !		1	i .	1						1.102	1.31	!
4	#	#fi I	30	60.63	0.75	16.57	2.20	3.47	0.13	2.53	4.53	3.82	3.25	0.37	1.21	7.07	0.85	0.52	1
٠	薯	中國		58.05	0.79	17.41	3.23	3.57	[0.15]	3.24	5.77	3,57	2.36	0.41	0.35	5.93	0.66	0.25	i
t	4	新江.	30	43.4	1.83	11.47	5.45	6.26	0, 19	11.64	10,35	2.84	1. 10	0.75		1.24	0. 19	9.13	1 . 8h
i	性岩	中国		43.67	0.90	4.53	4.22	1.77	0. 25	25.34	i (8.79)	0.90	[0.41])	i	1.31	} ⊢∪ . 1 b	4.03	3.26

2. 做量元素特征 浙江酸性岩与维氏酸性岩丰度值相比,浓集比率>2的元素有Ag (12.4)、Cr (10)、Mo (8.3)、Zn (4)、Zr (3.9)、Ba (3.4)、Pb (2.8)、Mn (3.1)、Sn (2)。中性岩与维氏中性岩丰度值相比,浓集比率。2的元素有: Ag (10.9)、Mo (7)、Cr (4.4)、Ba (4.2)、Pb (3.8)、Zn (3.4)、Be (3.3)、Zr

(2.3)、Mn (2)。浙江基性岩与维氏基性岩丰度 值相比、浓集比率 ≥ 2 的元素有: Be (12.5)、Mo (5)、Sn (3.3)、Yb (2.5)、Ba (2.4)。超基 性岩与维氏超基性岩丰度值相比,浓集比率 ≥ 2 的元素有: Ba (918.4)、Pb (29)、Be (25)、Mo (24)、Sn (21.5)、Ga (13.9)、Nb (12.6)、Sn (7.6)、Zr(7.1)、V(3.6)、Zn(3.5)、详见表 2。

-						浙江	省主	要岩	蒙岩	微量	元素	丰度	值(ppn	い及	液集	比率	表						表	2	
	項	Ħ	岩体敷	Ва	Мn	Zr	Şr	w	Cr	Zn	l.a	Ph	v	Y	Nb	Cu	В	Ga	Μo	Sn	N:	Υħ	Сo	Вс	sı	Ag
	酸性岩	〒	71	2798 830 3.4	1880 600 3.1	776 200 3.9	474 300 1.6	340? 15 226?	25 0 25 10	24.2 60 4, 0	60	20	40	34	20	20	0, 01	20	1	3	5.7 N	4	-5	5.5	3	0.0
#	中性岩	 	27	2716 650 4.2	i -		536 800 0.7		220 50 4.4	72		15	62 100 0.6	36.7	27.9 20 1.4	24 . 6 35 0. 7	\		6.3 6.9	1	11 .1 55 0.2	Y	6.7 10	1.8	İ	0,7 0,6 10.
典	基性岩	X 维氏值 CR	87	71 0 30 0 2. 4	1100 2000 0_6	160 100 1.6	110 440 0.3	5	270 200 1.4	130	10	15 8 1.9	113 200 0,6	10 20 0.5	3 20 0.2	54 100 0.5	0.07	30 18 17	1.4	l	176 161	2	45	1	1	0.
	超基性岩	X 维氏値 C R	2	918.4 1 918.4	14 10 1500 0, 9	30	21 5 10 21 . 5	Ą	29.5 20.00 0, 1		21.1	2.9 0.1 29	145. 9 40 3. 6		12.6 1 12.6	20	0.001	2	0.2	0.3	119.5 2000 0.1	1	33.2 20	i0, 2	5	0.1

注: X 为几何平均值: 浓集比率 CR · X 维氏值

不同时代花岗岩类地球化学特征

1. 化学成分方面 从老到新演化总趋势是基 性成分 (Fe、Mg、Ti)减少、酸性成分略有增 加,印支期花岗岩类碱值较其他期花岗岩类碱值 高(表3)。

浙江省不同时代花岗岩类岩石化学成分对比表

表 3

构造岩体	U m.	134 FP 494		. 1	萬 化	物音			(ppm)			
活动期	岩体敷	样品數	SiO ₂	TiO2	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na : O	K ₂ O	P ₂ O
雪峰期					•								
加里东期	5	5	74.32	0.92	13.03	1.16	1.26	0.04	0.54	0.61	3.22	4. 83	0.06
印支期	9	13	74.82	0.19	11.79	0.91	1.16	0.05	0.40	0.75	2.85	6.33	0. 18
燕山早期	30	49	74.28	0.16	12.72	0.10	1.48	0.046	0.46	0.70	3.43	4.78	0.06
燕山晚期	30	36	74.56	0.20	12.33	1.65	.0.82	0.076	0.37	0.67	3.70	4.76	0.05

2. 後量元素方面 从老到新,Fe族元素(V、Ni、Co、Cr) 呈不断减少的趋势,从雪峰期到 兼山晚期,Mn、Sn都高于维氏同类岩石平均含量,其中印支期花岗岩类。Cu、Pb、Ag、Mo、Sn元素高出维氏值2倍以上(表4)。

矿化岩体元素分布特征

在进行岩体评价时一般认为: 岩体中成矿 元素含量高,反映岩浆中该元素浓度大,可能成矿的机会就大。尽管这只是成矿的某一条件,而不是实现成矿的充分条件,但是元素含量,尤其是成

内造一 岩浆		样品数		l	î	故	π	* :	平片	9 含	*	(ppr	n)	_			
活动期	石件权	77-00 XX		v	Сг	Co	Nı	Сп	Pb	Zn	Zr	Ga	w	Sn	Ве	Мо	Ag
雪峰期		,	X	336	126	10	29	31	6.3	50	100	10		7.9	5	ő	
3 77 77	3	3	$C^{*}R$	5.9	5	2	3.6	1.6	0.3	0.8	0.5	0.5	ļ	2.6	0.9	5	
加里东期			X	21	10	10.7	3.2	18.6	53	66	6.8	9		7.9	6	5	
加里小河	5	6	CR	0.5	0.4	2.1	0.4	0.9	2.7	1.1	0.3	0.5		2.6	1	5	
印支期		43	X	24	11	6.5	8	51	16	95	207	18	33	8.8	5.5	7	0.8
中义则	ti	43	CR	0.6	0.4	1.3	1	2.6	2.3	1.6	1	0.9	22	2.9	1	7	16
MC.I. nt. NO			X	16	20	2.7	6	9	39	151	1178	20		9	5.6	5	
燕山晚期	13	135	CR	0.4	0.8	0.5	0.8	0.5	2	2.5	5.9	1		3	1	5	
Mr. J. note Met	•	20	\overline{X}	10	7	2.7	3.4	7	45	34	2.41	13		1.9	5	6	
燕山晚期	32	32	CR	0.25	0.3	0.5	0.4	0.4	2.3	0.6	1.2	0.6	ļ	1.6	1	6	ĺ
酸性 (1962年	岩元素 维诺	丰度值 格拉多	夫,	40	25	5	8	20	20	60	200	2.0	1.5	3	5.5	1	0.0

X 为几何平均值: C R 为浓集比率值 (X 维氏值)

矿元素的含量始终是最直接、最重要的判别含矿 岩体的标志。据浙西7个铜(钼)矿化和4个钨、 锡矿化岩体的统计,它们具有下列地球化学特征:

1.常量元素方面 铜、钼矿化岩体,硅值

(SiO₂) 多在68~75%间,碱值(K₂O+Na₂O) 多在7~8°0间, K2O Na2O。钨、锡(铁) 矿 化岩体、硅值 75%, 一般在75~77%间、碱值 >8%, 一般在8~9%间(表5)。

浙西铜钼-锡钨矿化有关岩体化学成份特征表

表 5

岩体 名称	SiO ₂	K2O +Na2O	$-\frac{K_2O}{Nd_2O}$	Al:O: K:O+Na:O+CaO	有利矿化元素
岭后花岗斑岩	69.54	4.68	;.58	3,28	Cu.Pb,Zn
桐村花岗斑岩	67.41	7.83	1.23	1.40	Mo.Cu.Fe.Pb
黄柏坑花岗瓶岩	69.02	7.20	1.79	1.39	Mo.Co.Fe,Pb
石门坑花岗斑岩	68.40	7.10	1.08	1.47	Mo.Cu,Pb.Ag
双源林菲细斑岩	76.27	7.12	1.40	1.67	Mo.Cu.Pb.Ag
里山岭花岗斑岩	75.35	5.85	2.52	2.09	Cu. Mo. Pb. Zn
歌午岭花岗斑岩	73.11	6.83	1.40	1.83	Cu. Mo, Pb
夏色岭花岗岩	76.68	8.09	6.63	1.53	W. Cu, Be
铜山花岗岩	75.76	8.38	1.19	1.29	Fe.Sn.Cu(W)
岩前花岗岩	76.42	8.59	1.34	1.40	W. Sn(Fe)
黄石潭花岗岩	76.66	8.16	1.42	1.29	Sn.W(Fe)

由此可见,铜、钼、钨、锡矿化都与高碱富 钾岩体关系较密切,其中钾钠比(K2O:Na2O) 大,有利于铜矿生成,而铝指数 (Al₂O₃ K₂O+ Na₂O+CaO) 高,对斑岩铜矿更有利。

2. 微量元素方面 矿化岩体都具有高背景的 成矿元素,如分布在浙西开化——常山一带的七 处印支期或燕山期花岗斑岩体,其中的Mo、Ca、 Pb、Ag、Zn等元素地球化学背景都很高,浓集

比率大。因此,具备了基本地球化学条件的岩体, 仍不失为是寻找铜 (钼) 矿、特别是寻找斑岩型 铜(钼)矿的有望地区。又如浙西四处燕山早期 花岗岩体,都具有较高的Sn、W地球化学背景, 有的已构成小型钨、铜矿床、在铜山岩体南东隐 伏侧与奥陶系和志留系接触地带,是寻找以钨为 主的多金属矿远景区。