富集具有重要作用。结合已有实验资料可以得 出: 在岩浆晚期结晶分异--交代--高温气液演化 成矿过程中,W、Sn、Ta、Nb、、Si、Li、Be 等主要以氟的络合物形式迁移的有:(K, Na)2 TaF₁, K₂NbOF₅, Na₂NbOF₅, K₂NbOF₅. $H_2O_1(K, Na)_2[WO_3F_2]_1(K, Na)_1[WO_1]$ F_4], Na_2 [Sn(OH,F)₆], Na_2 Be F_4 , K_2 Si F_6 , Na₂SiF₆、LiF 等。

根据上述络合物中F 与Ta、Nb、W、Sn、 Be 的比例关系, 计算了水溪庙钽、铌(钨、锡) 花岗岩矿床 (表内+表外) 范围内Ta、Nb、W、 Sn 的总金属储量及其所需携带剂F 的总量,又根 据矿体中F的平均含量和矿石储量粗略计算了F 的总储量; 二者之比表明, 在矿体范围内参与携 带Ta、Nb、W、Sn的F仅占F总量的13%, 说明矿液中F 是过量的; F 除了携带Ta、Nb、 W、Sn之外,还要携带Li、Si、K等元素。如 果计算时包括矿体周围的原生晕,测F晕更多, 因为F的大量富集是在矿体前缘晕。

2. 钽、铌、钨、锡的沉淀、富集和分带 各 种元素氟络合物都有一定稳定存在和迁移的条 件。物理化学环境的变化,络合物的破坏,使金 闖元素沉淀富集成矿。由于Ta、Nb、W、Sn、 Be 氟络化物迁移和破坏的条件不同,造成了这些 元素在空间上的富集部位也有差异,并构成了矿 床的垂直分带。

实验资料表明,Ta、Nb的氟络合物的迁移 能力有一定差异。Ta 无论从熔融体相,还是从液 相转入气相的能力和迁移能力都比Nb大, Nb比 Ta 先析出, 矿化深度大, Ta 相对于Nb 更富集

于岩体顶部,如水溪庙矿体,从下部少钠长石花 岗岩→钠长石花岗岩→富钠长石花岗岩→伟晶岩 脉,虽然Ta、Nb都在增加,但二者幅度不同, Ta₂O₅/Nb₂O₅由 0.6→0.7→0.9 →1.36。下部 $Nb_2O_5 > Ta_2O_5$, $\perp Ta_2O_5 > Nb_2O_5$.

由于Sn 氟络合物(Na z [Sn (F, OH),])的 形成和迁移温度(300℃)比K₂NbOF,和K₂TaF, (超临界温度 > 374 ℃) 低, 加之W、Sn 是强亲 氧元素,它们的沉淀需要相对多的氧,因此使W、 Sn 与Ta、Nb 分离。当Ta、Nb 的络合物大量 破坏沉淀成矿之后,W、Sb络合物仍能沿构造裂 隙向上部围岩迁移,造成了上有钨锡长石—石英 脉状矿床,下有钽铌花岗岩矿床的分带观象。

3.蚀空-成矿过程中含F矿物的形成 络合 物破坏后,外界雕金屬 (K、Na)和携带剂(F) 与围岩发生作用形成相应蚀变,蚀变矿物组合与 围岩成分有关。

钽铌花岗岩矿床,随Ta、Nb 向花岗岩顶部富 集,伴有钠长石、黄玉的形成和富集,并交代先 结晶的钾长石,F 主要进入黄玉 $[Al,SiO_{\lambda}(F)]$ OH)2]、铁锂云母[K, Li, Fe, Al (AlSi, Oto) (F,OH)2]、细晶石中,并形成少量萤石。 当 氟进入碳酸盐围岩时则形成大量萤石,如水溪庙 钽铌花岩岗矿床前缘的灰岩内含矿岩枝及长石— 石英脉、石英脉的两壁形成萤石镶边,在萤石边 外, F 还可扩散5~10厘米, 形成浸染状萤石。 由于高温气液含大量F、当络合物破坏,F卸载 之后,仍向上迁移,在远离矿体几百米的前缘形 成萤石一锂云母细脉带或F 异常。这是寻找盲矿 体的重要标志。

浙江省区域构造地球化学特征及成矿预测探讨

浙江省地球物理探矿大队 郦逸根

区域构造地球化学虽然目前仍很不成熟,但已 引起广大地质一地球化学工作者的极大关注。它通 过构造发展过程中各个阶段、各个空间部位,元素 含量差异所反映的区域地球化学场特征的研究,探 讨区域构造成矿控制特点,即空间地球化学专属性。 这对成矿远景区的划分和矿产预测具有重要的实际

意义。

区域地球化学场特征

(一) 元素在岩体和地层中的分布分配规律

1. 岩体中元素的分布分配规律 我省不同时代 岩体微迹元素丰度与泰勒值(1964)之比值变化情

况如下:

- ①雪峰期岩体Cu 为2.2 (与全省背景相比,雪 峰期至燕山早期岩体为1.0~4.6),Mo 为1.4;
- ②加里东期岩体Be为2.2, Sn 为5.3, Mo 为2.7;
 - ③印支期岩体Mo 为11.0;
- ④燕山早期岩体Be 为2.5~3.3,Sn 为3.3~ 5.0, Mo为6.0~9.0:
- ⑤燕山早期至晚期岩体Pb为2.6~54.9,Zn 为6.0。

可见,自浙西向浙东,随着各时代岩体由老变 新,岩体中主要含矿元素的分布在空间上的演变趋 势是:W、Sn、Be、Mo-Cu,Mo-Pb,Zn。

- 2. 各地层元素的分布分配规律
- (1) 浙西地层 浙西各时代地层出露较为齐 全。不同时代的地层微迹元素丰度与泰勒值(1964) 之比值如下:
- ①自侏罗系至白垩系Pb 为 4.1~ 4.8 , Sn 为 2.5~10.0, Mo为2.0~2.7。
- ②前震旦系及自剿武系至石炭系Cu 为0.3 ~ 0.8, 为全省背景值的 1.0~2.4 倍;
- ③自前震旦系至志留系٧为0.5~1.0,为全省 背景值的1.1~1.9 倍。
- (2) 浙东地层 浙东广泛发育有中生代火山岩 和前泥盆纪变质岩。不同时代地层微迹元素丰度与 泰勒值 (1964) 之比值为:
 - ①白垩系馆头组和朝川组Mo为1.3~2.0;
- ② 侏罗系磨石山组 b c 段 P b 为 3.7 ~ 6.1 , Zn 为1.2;
 - (③) 前泥盆系陈蔡群Pb 为3.8。

浙东以富Ba、Mn、Pb、Ga、Ti 为特征。 浙西以Be、Sn、Ni、V、Mo、Cu偏高为特征。这 种地球化学背景的差异,导致东和西两地区域地球 化学异常在元素组分上的不同,浙东多为Mn、 Ba、Ag型,浙西多为Sn、Mo、Be型。

(二) 元素的区域地球化学分布特征

从1:50万Cu、Pb、V地球化学图来看,其 特征如下。

- 1. 铜 铜元素区域地球化学场的特征,对区域 地质构造骨架的分辨,具有重要意义。
- (1) 皖浙赣边区及平水一铜岩山一线, 25ppm 等值线在地球化学高背景上所呈现的地球化学"山

- 脊",呈北北东向和北东向展布。大于15ppm的地球 化学高背景的分布,与自雪峰期至燕山早期较富铜 的岩体和自元古界至古生界富铜沉积地层的空间分 布一致。常山至建德一线低于10ppm的负异常带, 反映了贫Cu的中生代火山岩的空间分布。
- (2) 溪口一义乌、嵊县一余姚一带, 25ppm 的 地球化学场呈岛弧状展布。它与燕山早期花岗岩类、 前泥盆纪陈蔡群的空间分布一致。
- (3) 余姚--丽水以东,大体为低铜地球化学 区,反映了贫Cu而富Pb、Zn的中生代火山岩的 地球化学属性。
- 2. 铅 由浙西至浙东,随着以中生代为主体的 火山活动趋于剧烈,铅含量亦增高。
- (1) 江山一绍兴以西,50ppm的高值区分布零 星,与燕山早期侵入岩相吻合。分布于华埠一杭州一 线低于25ppm的负异常带,与贫Pb的志留纪至二 迭纪沉积地层吻合; 分布于芳村一顺溪一线的负异 常带,反映了较为贫Pb的震旦纪地层。
- (2) 宁海一永嘉及遂昌一庆元一带,以50ppm 为界的等量线, 镶嵌连接呈北东向展布。这一地球 化学特征,除与广布最富铅元素的晚侏罗世磨石山 组b 段和c 段相一致外,还与燕山晚期富铅侵入岩 和前泥盆纪陈蔡群变质岩的分布有关。
- (3) 以50ppm 高界, 义乌-丰惠-带前泥盆纪 变质岩区,分布模式呈块状;泰顺一文成、缙云一 安文一带,分布模式呈"群岛"状。这一地球化学 "势态",反映了本带复杂的地质背景特点。
- 3.钒 我省V 的地球化学分布, 具有一定的地 质---地球化学专属性。
- (1) 吴兴一芳村一线,以120 ppm 高限的等量 线,呈北北东向展布。由西向东、新趋平缓、反映 了浙西沉积地层V 自元古界至古生界的空间分布 规律。
- (2) 自江山-绍兴至西屏-黄岩、以120 ppm 为限, V 以"岛弧"状呈北东向和北西向展布,上 要与新生界的基性岩和中生代中基性火山岩、次火 山岩的分布有关。至西屏一黄岩一线,北东向"岛 弧"倾没。
- (3) 在西屏一黄岩一线,100 ppm 的等量线呈 线性排列。以南, 100 ppm 等量线是"弧峰"状分 布。65ppm 等量线多呈北东及北西走向,主要与中 生代基性火山岩、次火山岩, 以及燕山期和喜山期

中基性侵入岩的分布有关。

区域构造地球化学辨认

元素在区域空间上分布的不均匀性,以及地球化学域(带、区)中元素含量强度的"势态",显示出了与相邻背景单元的差异。这种区域地球化学分布模式的特征,可能反映了地质构造单元的介质性状。

(一) 我省构造地球化学格局的分辨 岩浆一热液沿通道运移,在空间有利部位停积。根据当时的物理化学和热力学条件,各种成矿成晕元素依次聚集或扩散,形成了不同构造的不同地球化学形迹。由于岩浆一热液在成分和浓度上的差异,以及后期活化作用的叠加,致使同一断裂构造的不同区段,有着不同的地球化学形迹。

我省区域断裂构造地球化学格局见表1。

在不同性质或不同类型的大总构造单元中,除了分布有共同的成矿成量元素异常外,还可能分布有独特的成矿元素异常。这种特有异常的空间分布,可以认为是一种区域构造地球化学专属性。区域构造单元地球化学解译见表2。

(二) 区域地球化学分区 在构造运动及其演化过程中,元素的迁移、沉积和富集、贫化、导致

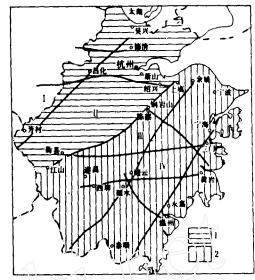


图 1 浙江省区崛地球化学分区图

1 一 所西 Cu 地球化学域,2 一 新东沿海 Pb 地球化学域,1 一 皖 断赖边区 W, Be 地球化学带,[1 一 新西 Cu, Mo 地地球化学带,[1 一 陈蔡一 遂昌 Pb、Ag 地球化学带,[1 一 新东 Pb、Zn、Sn 地球化学带,V 一 沿海(?) F 地球化

学带

不同地质构造单元中元素丰度的差异。依据所显示的地球化学形迹,可以划分出不同地球化学类型的区域地球化学分区(图1)。

地球化学	断裂	构	造 地 球 化	学 形 迹
构造体系	名称	铜地球化学模式特征	综合异常形迹特征	基性、超基性元素形迹
北 (北) 东向构造	芳村— 吴兴	25 ppm 等量线轴线方向	Cu, Pb, Zn—Cu, Pb—Cu, Pb, Zn—Pb, Zn	
	江山一 绍兴	15ppm 等量线轴线方向	Cu—Cu, Pb, Zn, Mo—Cu, Pb, Zn, Ag—Cu, Pb, Zn	上虞一义乌区段显示有 Ni、V、 Co、Cr元素组合异常
	丽水—	6.5-4-15ppm 等量 线轴线方向	Cu、Pb、Zn—Cu—Pb、Zn— Cu—Pb—Cu、Pb、Zn	丽水一长乐区段显示有Ni、Cr Co、V 元素组合异常
	水嘉一 宁海	10ppm 等量线轴线方向	Pb—Cu, Pb—Pb, Zn—Cu, Pb, Zn—Pb, Zn—Cu, Pb, Zn	
东西 (北东东)向构造	天日山 一徳清	15ppm 等量线轴线方向	Cu, Mo—Cu, Pb, Zn—Cu, Pb, Ag	
	昌化一 肖山	25~15 ppm 等量线轴线 方向	Cu, Pb, Zn—Cu	
	衡县一 三门	6.5~ 4~6.5ppm 等量 线轴线方向	Cu, Pb, Mo, Sn—Pb, Zn— Cu, Pb, Zn, Mo—Pb, Zn	有V 异常显示
	西屏一	6.5 ppm 等量线轴线方向	Cu, Pb, Ag—Mn—Cu, Pb, Zn, Mo, Ag	西端显示有Ni、Cr、Co元素组; 异常,东端显示有V 异常
北西梅造	丽水— 進州	6.5 ppm 等量线轴线方向	Cu, Pb, Zn—Cu	
	何岩山 一三门	10 ppm 等量线轴线方向	Cu, Pb, Zn, Mn—Cu, Pb, Zn	

	区城构造	区域构造地球化学形迹				
地质构造单元	地球化学名称	地球化学模式特征	地球化学异常形迹			
江南古陆	皖浙赣边区W、Be 地球化学带	①Cu、V 地球化学高背景带: ②Pb 地球化学低背景带	W、Sn、Nb、Be、Mo、Cu、Pb、 Zn、Hg、As、Sb异常带			
新西凹陷	新西Cu、Mo 地球 化学带	同上	Sn、Cu、Pb、Mo、Zn、Au、Ag 异常带			
上廣一 龙泉	陈蔡一遂昌Pb、Ag 地球化学带	①Cu 地球化学中背景带, ②Pb地球化学高、中背景带, ③V 地球化学中、低背景带	Sn、Mo、Cu、Pb、Zn、Au、Ag 昇 常带			
宁波一泰順 新 栖 带	漸东Pb、Zn、Sn地 球化学带	①Cu 地球化学低背景带; ②Pb 地球化学中、高背景带; ③V 地球化学中、低背景带	Nb、Be、Mo、Sn、Cu、Pb、Zn、 Mn、Ag、Ba异常带			
沿海隆起	沿海 (?) F 地球 化学带	①Cu 地球化学低背景带; ②Pb 地球化学高、中背景带; ③V 地球化学中、低消景带	Sn、Mo、Be、Cu、Pb、Za、Mn、Ag、Ea、F (?) 异常带			

区域地球化学分区和地质构造单元对比见表3。

· 成矿区 (带) 的划分与矿产预测

不同的区域地球化学分区,分布有不同成矿元 繁组合的地球化学异常,指示了不同矿产的分布特 征。因而,依据这种地球化学特征,可以进行成矿 远景预测。

全省包括有两个地球化学成矿域,即含有两个 一级地球化学分区(图2)。

(一) 浙西铜地球化学成矿域

本域为皖浙赣 Cu 地球化学域的 东缘, Cu 丰度 略低于泰氏值,属偏弱分异的 Cu 地球化学域。域 内含有3 个三级地球化学分区。

- 1. 圖化—杭州膨润土、萤石地球化学成矿带本带主要分布有同火山作用有关的非金属矿产,如 萤石矿、膨润土矿、高岭土矿以及硼矿。
- 2. 淅西W、Sn、Be 地球化学成矿带 本带分布的Be 异常占全省Be 异常总数的41.7%,W异常占全省点W异常总数的47.1%, Sn 异常占30.5%。

这些异常反映了带内分布的受侵入构造控制的 相应矿产。

3.绍兴—建德Cu、Au、Ag地球化学成矿带本带处于Cu地球化学高背景带,具有富Cu的优势。带内分布的Cu异常占全省Cu异常总数的29.5%,相应分布具有—定"层控"和"岩控"特

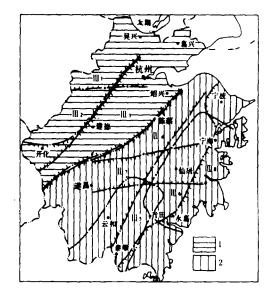


图2 浙江省成矿远景区(带)简图

1 一新西侧地球化学成矿域,2 一浙东及沿海铅地球化学成矿域; □1 一昌化一杭州黟湖土、萤石地球化成矿带; □2 一浙西 W、Sn、Be地球化学成矿带; □3 一绍兴一建德Cu、Au、Ag 地球化学成矿带; □3 一茶顺一青田 Sn、Mo 地球化学成矿带; □3 一茶顺一青田 Sn、Mo 地球化学成矿带; □3 一港順一青田 Sn、Mo 地球化学成矿带; □4 一宁海一永嘉 Pb、Zn 地球化学成矿带; □1 一沿海萤石、明矾石地球化学成矿带

	_	_
4		- 4

	构	造	单	元		地	球	化	学	分	Ø	_
一级	二级		===	级	一级		二 级			三 级		_
扬	江南古陆 吴兴	· · · · · · · · · · · · · · · · · · ·			新西に		皖浙赣 边 区 W、Be 地球化学带		安吉一开化W、Sn、 Be 地球化学区		昌 F 化 B	
扬子准地台	浙西凹陷	吴兴 	一开化(当山一建瓴 印支槽皱	花岗岩)隆起 基底断裂 ——— 带	地球化学城	浙西C 化学相	Cu, Mo	地球	绍兴—《 地球化学	ž徳Cu、Au ≯区	سايد ⊢	
南褶皱	上虞一龙泉隆起	 			.	浙中Pb、Ag 地球化学带		球化	陈蔡一遂昌 Pb、Zn、 Ag 地球化学区		遂昌	-
	宁波一泰顺斯槽 中 宁海一				浙东沿海Pb	斯中Pb、Sn地球化学带	泰顺—青 地球化学	田 Mo、Sn 区		Í.		
东南沿海槽皱系	沿海隆起	象山一	-海门基底	(花岗岩) 隆起	地球化学域	沿海F。S(?)发球化学符	年	宁市一永 地球化学	痛 Pò、Zn □区	V K	:	
				云基底断裂	字域			海门一象山F (?) 地球化学区				
		温州一	-平阳基底	(花岗岩) 隆起				温州—平阳S (?) 地球化学区				

征的铜银矿。带内还分布有A8 异常及相应矿床 (点)。

(二) 浙东及沿海铅地球化学成矿域

本域为闽浙Pb地球化学域东北部,Pb丰度大大高于泰氏值,属分异的Pb地球化学域。包括3个二级地球化学分区。

- 1. 除蔡一遂昌 Au、Ag、Pb、Zn 地球化学成 矿带 本带分布的 Ag 异常占全省 Ag 异常总数的 59.6%。本带分布有较多的与Au、Ag 有关的矿床 (点)。遂昌一缙云以南的Ag 异常数占本带点异常数 的96.6%,拥有79.2%与Au、Ag 有关的矿床(点), 还分布有百余个Pb、Zn 异常,是有利的Au、Ag、 Pb、Zn 成矿区段。
- 2.秦順一青田Sn、Mo地球化学成矿带 本带 分布的Sn 异常占全省Sn 异常总数的43.5%; Mo 异常占25.7%。

本带分布有与Sn、Mo 有关的矿床,以及叶腊石矿。本带可延伸至福建省福安一宁德和松政一政和一带。

3.宁海-永嘉地球化学成矿带 本带分布的

Pb、Zn 异常占全省Pb、Zn 异常总数的16.7%。本 带处于Pb地球化学高背景带,表现为Pb、Zn 异常 面积大,强度高,已知Pb、Zn 矿床(点)分布多。

- 4. 遂昌一宁海萤石、沸石地球化学成矿带 本 带位于强烈晚期火山岩浆活动带,分布有 Nb、Ba、Mn、F 等元素异常,为我省重要的萤石、沸石矿产区。从成因上看,萤石多以火山热液充填型和岩浆期后热液裂隙型为主;沸石以火山一沉积热液改造型为主。
- 5.沿海萤石、明矾石地球化学成矿带 本带含有2个三级地球化学分区,是我省的非金属成矿带。
- (1) 海门—象山—带分布有萤石、明矾石、高岭土等矿产。
- (2) 温州—平阳—带分布有与火山作用有关的明矾石、黄铁矿、高岭土等矿产。

从元素在构造运动及其演化过程中,不同阶段和空间不同部位的含量分布分配特征,研究成矿规律和进行成矿预测,笔者只是初步尝试。上述成果的介绍,目的在于引起更多的地质一地球化学工作者的关注,以进一步开展对这门新兴分支学科的研究。

