果木矿田位于南 岭东西向复杂构造带 与湘中一柱东一海南 岛南北向构造带的反 接部位, 恭城向斜的 北部扬起端。

栗木花岗岩

长石与矿化的关系

黄雅乔

复式岩体,产于多组构造复合部位,主体轴向南北,呈岩株状侵入上中泥盆统与下石炭统地层,出露面积约1.5km²,深面可能是一个岩基,同

区内发育东西、

南北、北东、北西、北北东和北东东等方向 的断裂,东西向和南北向两组断褶构造组成 基本构造格架,南北向隆起上发育东西向横 跨褶皱。

栗木花岗岩为一同源、同期、不同幕的 素丰度见表 1。

位素地质年龄为160~196百万年(锆石,铀一铅法),属燕山早期产物。根据岩石、矿物特征,副矿物组合,接触关系和同位素年龄,将岩体分为三幕,各幕花岗岩中微量元素主度见表1。

花岗岩微量元素丰度表(ppm)

表 1

幕次	元 素	Tn	No	w	Sn	Ве	F	Cu	Рь	Ga	Ni	Ti	Ag
_	幕	30	37	40	100	25	6300	90	30	50	110	228	
=	春	21	30	119	120	4	8200	90	30	24	30	228	26000
and grad	幕	31	24	79	10 0	6.8	5000	130	30	35	19	138	
维氏()	962)	3.5	20	1.5	3	5.5	800	20	20	20	8	2300	0.05

注: Ta、Nb、W、Sn为化学分析, F用离子电极分析, 其余为光谱半定量分析。

栗木花岗岩中长石和云母类矿物的化学 成分和分布特征,对于探讨花岗岩的成岩成 矿**演**化规律有重要的意义,本文仅就长石特 征进行探讨。

花岗岩中的长石主要为正长石、中微斜微纹长石和完全有序型的斜长石。

1.长名含量:长石类矿物(钾长石和斜长石)总含量(用体积百分比表示)一般在42.16~56.2%。从第一幕到第三幕钾长石依次减少,斜长石显著增多,斜长石比华南同期花岗岩高出17.1~49.5%(表2)。两种长石的量比关系,也可从碱长石系数中看

花. 岗岩中钾长石和斜长石含量表

表 2

ш	×	含 量	(%)	备注
, де	A	钾 长 石	斜长石	14 (I.
华	南	34.8	26.3	
栗	第三幕碱长花岗岩	13.34	29.32	Ta、Nb矿床
	第二幕二长花岗岩	21.60	30.84	
	第一幕二长花岗岩	24.07	32,20	Ta、Nb矿化

出,从第一、二幕的二长花岗岩演化到第三幕的碱长花岗岩,其碱长石系数依次增加,分别为54.68、55.26积79.11%。

2.长石成分变化:斜长石在第一幕二长 花岗岩中含量为32.2%,An28~35,为更 长石和中长石;第二幕二长花 岗岩 中含量 30.84%,An0~14,其中钠长石仅7.4%, 以更长石为主;第三幕碱 长 花 岗岩中含量 39.32%, An 0~20, 绝大多数是 An < 3 的钠长石。说明果木花岗岩随着岩浆演化到 晚期阶段, 斜长石中的钠组分逐渐富杂, 从 而使斜长石向酸性演变。

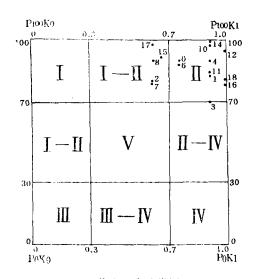
从分析结果来看,钾长石的 CaO 含量低,Ab组分由早到晚渐增(表 8),这是由于花岗岩岩浆演化到晚期阶段富含钟,从而形成富含Ab分子的钾长石。

	tal. de		分. 析	长 石 组 分 (%)					
幕次	地点	SiO2	A12O3	K ₂ O	Na2O	CaO	Or	Ab	An
	水溪庙	64.03	18.27	15.57	1.19	0.10		60~80	
第		65.27	18.56	15,4 3	1,13	0,22	20~10		
		64.86	18.78	16.32	0.79	0.18			未
	老虎头	64. 9 3	18.70	15.52	0.83	0.10		40~60	
三		65.90	18,26	15.85	0.41	0.07	60~40		于
		65,81	18.76	12.16	3,66	0.05	1,00 40		
		65. 2 1	19.02	14,87	0.51	0.08		47	测
幕	A AL ME	65,54	18,22	14,65	1.42	0.01	MK	40~60	筵
	金竹源	65.55	18.38	15.27	1,13	0.10	60~40		~
第	me. 13.	65.45	18.30	15,22	1.24	0.39		 	
第 二 幕	香 坑	65.50	18.40	15.32	0.92	0.10	80~60	20~40	

3.长石的有序度,长石的 Si—A1 有序程度与形成温度和冷却速度有极为密切的关系。本区花岗岩中长石采用X射线分析(湖北

宜昌502所测定),测定数据见表 4。本文拟用 长石的Si—A1有序度的变化来 探讨 花岗岩 型钽铌矿床成矿作用的某些物理化学条件。

		果	大 燕	山期石	花 岗 岩	中长	石的有	序度			表 4
时	年龄	岩石名称		钾七	在 石		斜 长 石				
	(百万		2θ°C	uK*		有序度	20°CuK°				备注
升	年)		(181)	(131)	三斜度		(131)	(131)	An%	有序度	i
	_	碱长花岗岩	29.44	30.12	0.84	0.91	31.24	30.16	0	84	1. 第三幕为
第		碱长花岗岩	29.62	30.20	0.71	0.62	31.30	30.16	8	80	Ta、Nb矿床
		碱长岩花岗	29.40	30.08	0.81	0.91	31.36	30.22	8	70	2. 铆长石、
		碱长花岗岩	29.60	30.34	0.76	0.91	31.20	30.14	0	90	三斜度根据戈
Ξ	1	钾长花岗岩					31.50	30.40	1	80	尔德史密斯
_	160	富石英花岗岩	29.58	30.18	0.76	0.75	31.22	30.12	1	89	(1954)的公式:
		碱长花岗岩	29.70	30.24	0.66	0.62	31.18	30.10	0	79	$\Delta = 12.5$ (d)
		碱长花岗岩	29.74	30.34	0.73	0.62	31,22	30.14	0	90	131 - 131)
幕		钾长花岗岩	29 .50	30.18	0.83	0.75	31.20	30.12	0	99	而计算的有序
		二长花岗岩	29.64	30.34	0.84	0.91	31.32	30.26	0	98	度是根据索赛
		二长花岗岩	29.46	30.04	0.72	0.91	31.20	30.18	0	85	德科(1974)的
箅	-	二长花岗岩	29.60	30.26	0.81	1.00	31.02	30.16	0	95	图解而确定
		二长花岗岩	29.58	30.24	0.81	1.00	31.18	30.06	2	79	的。
=	174	二长花岗岩	29.66	30.22	0.71	0.91	31.28	30.18	1	100	3.斜长石。冇
		二长花岗岩	29.54	30. 20	0.81	0.66	31.20	30.12	0	92	序度是根据史
幕		二长花岗岩	29.60	30,28	0.83	1.00	31.30	30.20	1	82	密斯(1956)的
		二长花岗岩	29.50	30.06	0.69	0.62	31.20	30.16	o	98	图解确定的。


(1) 钾长石: 栗木花岗岩中钾长石的 三斜度变化范围(Δ =0.66~0.84,多数 在 0.7~0.84之间)不大,与华南燕山期 花岗岩中的钾长石(Δ =0~0.95)有所不同,钾长石以完全有序型为主,出现少数过渡型,过渡型微斜长石的出现,说明中微斜长石一正长石有序度的变化是一个连续的完整

系列。过渡型微斜长石是浅成(或半深成) 侵入体特有的矿物,它们是岩浆侵入到浅成 带后结晶而成。这些高有序度微斜长石的出现,与木区花岗岩富含挥发分有密切关系,由于岩浆演化导致在吨期阶段中挥发份富集,而使岩浆的结晶温度下降,为形成高有序度微斜长石创造了有利条件,因此这些高 有序度的微斜长石应属于低温下岩浆结晶作 用的产物(石英包裹体测温结果为300~ 340℃)。

(2)斜长石:人工合成和热处理天然 斜长石实验研究证实了斜长石 系列 Si-Al 有序度变化的连续性, 高温系列斜长石是无 序的, 低温系列斜长石是有序的, 介于两者 之间为一系列过渡型的斜长石, 栗木的斜长 石均为在序型,没有出现过渡型及无序型斜 长石, 从测定结果可以看出, 这些高有序型 斜长石An值均很低。

金結祐和舟桥三男[1]在研究 世界 某些 花岗岩斜长石有序度变化时指出, 花岗岩时 代越老,斜长石的有序度愈高。而栗木和华 南地区燕山期花岗岩中斜长石的有序度则与 其相反, 说明本区花岗岩形成和发展是地壳 演化不均匀性的表现。

(3)两种长石有序一无序的组合: 根 据两种长石有序一无序类型绘制成长石共生 结构状态分类图, 栗木花岗岩在图中投影点 分布在Ⅱ、Ⅰ一Ⅱ区,说明长石的有序一无

长石共生组合分类图

P K 完全无序型, Pin Ki完全有序型, P K 斜长石无序一钾长石有序型: P ... a K o

斜长石有序一钾长石无序型

序组合是有一定范围的。钽铌花岗岩型矿床 长石 计分投影在 II 区, 说明钽铌花岗岩型矿 床形成的温度较低,少数在 I ~ Ⅱ 区,表明 是中温条件。

从华南稀有元**素矿化**花岗岩来看,其**侵** 入时代多属燕山期,尤其是燕 山 早 期 及中 期。含矿岩体呈小岩株、岩瘤、岩枝、岩脉 产出, 多数为小岩株状复式岩体, 具有明显 分带性, 属浅成相。栗木稀有元素矿化花岗 岩属燕山早期产物, 呈小岩株状复式岩体。 矿体赋存于岩体不同标高的相对凸起的较高 部位, 矿床具有垂直分带特点。随着岩浆不 断地演化, 其分带也愈完全, 方向性与顺序 性的演变特征更为明显,导致稀有元素进一 步富集产生矿化或形成矿床。

钽铌矿化花岗岩, 不像稀土矿化花岗岩 在较高温和迅速冷却条件下形成, 缺乏充分 结晶分异作用的时间, 稀土元素在岩浆结晶 过程中未能产生相对富集, 因此其分布较均 匀。而钽铌花岗岩是在较低温度形成,这是 由于岩浆富含挥发份,一方面使岩浆结晶温 度下降,另一方面促使岩浆分异作用,同时 使稀有元素得到进一步的富集并产生矿化, 这就是钽铌花岗岩矿床往往 集 中 在 岩体顶 部、长石具有高有序度的原因。

栗木钽铌花岗岩中的长石属 有序型组 合,说明系低温条件下形成,这与石英包裹 体测温资料是吻合的。

因此, 花岗岩中的长石有序一无序状态 变化。不仅是反映成岩成矿作用的 重要标 志, 而且是寻找花岗岩型稀土、稀有矿床的 重要标志之一。

主要参考文献

- (1) Kim, C.W., Hunshaohi, M., Lithos, 1972, 5, No. 8
- (2)中国科学院地球化学研究所, 华南花岗岩类 的地 球化学, 1979, 科学出版社

