
区域构造地球化学的初步探讨

浙江物探队 郦逸根

随着勘查地球化学研究程度的深入, 作 为一个新的研究领域——区域地球化学,逐 渐为人们所注意。尽管现阶段尚未超越积累 资料的描述性范畴, 但已展示其广阔的研究 领域与实际意义。

已知区域断裂带上构造地球 化学的形迹

在实际工作中,根据地球化学成矿理 论, 综合分析已知区域断裂带上区域地球化 学异常的表现形式,进行类比,在相似的区 域地球化学异常带上, 探索区域构造带存在 的可能性。例如,在富盛至乌灶的北东向断 裂带上(图1), 岩浆活动剧烈, 混合岩化 作用强烈,铁铜多金属矿化点(矿点)众 多。带上发育着一连串Cu、Pb、Zn、Sn、 Ag等综合区域地球化学异常。异常群体的 长轴方向连线或单个异常的走向, 均呈北东 向展布, 与区域构造位置及为吻合。断裂带 上,还有 ΔT 航磁异常和重力布伽异常,与 化探异常基本一致。新建一魏山新华夏系断 裂带(属丽水一壶镇破碎带的北东段)上, 构造活动频繁, 波及较深, 岩浆活动剧烈, 并有多个火山口。带上分布有:中温热液型 多金属矿和铁矿床、中低温热液型铅锌矿、 火山热液裂隙充填型萤石矿等。与热液活动 有关的Cu、Pb、Zn、Sn、Ag等综合区域化 探异常(图2),呈北东向广布,明显受新 建一魏山新华夏系构造的控制, 并与航磁异 常的密集带分布相一致。又如, 在顺溪一青 田一带,存在着一组呈近南北向展布的张扭 性断裂带, 带上出现南北向区域地球化学异 常。诸如此类的例子很多,不再赘述。总 之。不同化学性质和分异条件的岩浆溶液, 能在大地构造的不同发展阶段和不同的空间 位置形成。一定的物理、化学条件下,含矿 热液将在空间有利部位停积, 根据当时溶质 浓度的不同和温度、压力的变化, 各种化学

P. 综合化级异常图 A 构造体系图 根据前三均科的 「今」は海火山は 「○」 水系沢根特別 「○〕 土産所は

E 2

59

}

元素依次聚集或分散。因此,利川区域化学 异常,是能够解释区域地球化学构造带的存 在的。

区域构造地球化学的鉴别

不同的构造及其演化阶段, 常伴有不同 元素的富集与贫化, 并控制元素的地球化学 分布, 出现复杂的地球化学形迹。因此, 利 用地球化学分散模式的变化规律, 将有可能 揭示区域地质构造的总轮廓。

区域地球化学特征的正确鉴别,目前尚处于探索阶段。不少化探工作者,尤其是区域化探工作者,做了大量研究工作,不同程度地论及这个问题。本文在前人资料的基础上,通过实践,提出一些不成熟的认识。

区域构造地球化学特征的鉴别,有如下 几方面:

1.地球化学分散模式的轴线方向,岩浆 热液带沿着构造的有利部位侵入,通过深成 和表生活动,造成元素的再分配。元素由周围介质向成矿空间,形成明显的 浓集 梯度 带。空间上表现为高于背景的 地球 化学分布。其轴线方向显示构造带的展布。由图 8 可见,20~30ppm的铜量线,形成北北东向展布的高背景区,从而揭示了平水一芙蓉地质构造的总轮廓。由于受芙蓉旋转体的影

响,轴线略向东西两侧转化。

全. 2.带状或串珠状区域地球化学异常的展布方向。如图 4 所示,从键跳一安文,各类区域地球化学异常明显呈东西向串珠状分布。就单一异常分布而言,呈东西向,或呈北西向,但异常群

体均呈东西向分布。又如长乐一临安一带, 串珠状的地球化学异常,极为明显地呈北西 向展布。该断裂带已被该区地质 工 作 者 公 认。

3.凭借趋势面的变化特征,反映元素的空间变化规律,从而揭示不同方向构造带的存在。不同方向的构造带,有着不同的元素组合及其强度变化。这种变化趋势,可以在不同元素的趋势面分析中得到反映,如图 5 所示,在键跳一岭下金之间存在着明显的近东西向展布的铅元素高背景带,在图 5 的南北两翼,有东西向分布的低值区。反证了键跳一岭下金东西构造带的存在。

à

4.根据区域化探异常模式的形状,如图 6,呈现较典型的放射状构造地 球 化 学 模 式,可以反映火山喷发构造的存在。此外还 可根据元素的组合,鉴别不同构造地球化学 类型。

构造生成序次的地球化学识别

由于构造运动具有脉动性和继承性,早期形成的构造,将受晚期构造的强烈改造,形迹上表现出构造的不连续性和错位。与此相应,元素的空间分布,也会发生相应的变化。在早期构造带上,区域地球化学异常表现出不连续性,或呈零星的串珠状展布,若

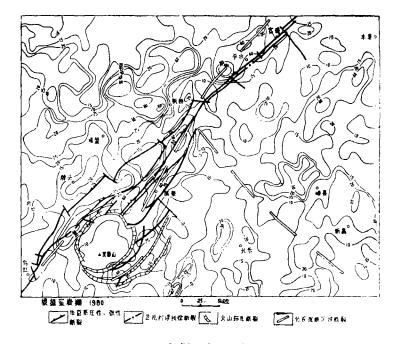


图 8 ××幅铜元素地球化学图

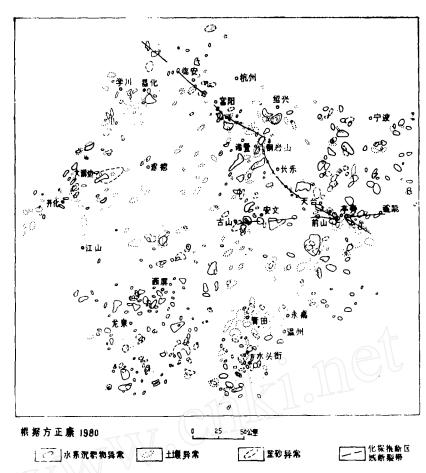


图 4 ××幅Cu、Pb、Zn、Sn、As綜合化探异常图

受切割将出现突然终止,晚期构造带上,以 及伴有后期活化作用的早期构造带上,地球 化学异常呈现连续性与完整性。在图 4 所示 的天目山一临安一富阳一铜岩山一长乐一天

台一亭旁北西向构造带上,有的部位 由于受北东向或北北东向构造的切割,发生错位,异常呈断续分布,表现为老年或残骸,如天台一长乐一铜岩山一带,富阳一临安一天目山一带等;有的部位,由于受晚期构造的影响,发生活化,异常呈现出连续性和完整性,如铜岩山一富阳一带。

另外,也可从单元素的地球化学 图中揭示构造生成序次的变化,如临 海至宁海的北东向断裂(温州—镇海 断裂带中段),明显地被键跳—岭下 金的东西向断裂切割,显然北东向断 裂早于东西向断裂。

> 区域构造地球化学的实用意义 1,利用构造地球化学,可以鉴别

出与成矿作用有关的构造。如青田一永嘉一 带,由于后期各种地质作用的干扰破坏,致 使构造形迹模糊,地表较难辨认。但在 Cu、Pb、Zn、Mo 元素的地球化学图上,却清晰

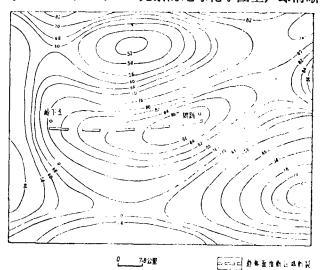


图 5 ××幅水系沉积物铅元素趋势五次面图

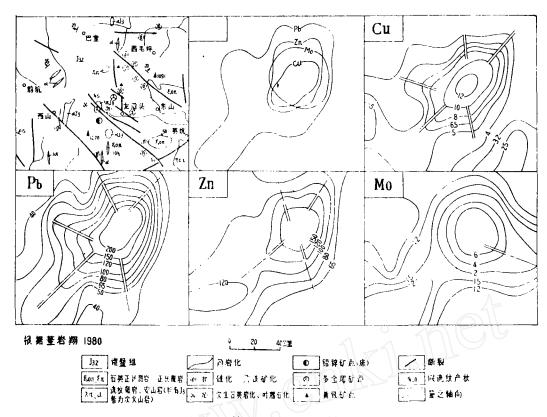


图 6 龙潭头放射状构造地球化学剖析图

地显示出构造特征。该构造带,在卫片解译 中已得到佐证。

2.为划分远景区提供基础资料。不同体系的构造形态,伴随着异同的岩浆热液活动。地球化学异常的产生,矿点的分布,常常依附于构造断裂带的分布。因此,从元素的地球化学分布来看,异常显示强烈,组分复杂,构成有益的地球化学找矿标志,从而为研究成矿规律,进行成矿预测,提供更充分的依据。

构造地球化学,建立在宏观的地壳运动 与微观的化学元素迁移,并互为因果的基础 上。从地球化学角度解释区域构造,在实际 应用中,具有一定的意义。 元素的背景区域变化特征,区域地球化学异常在空间上的分布规律,是构造地球化学鉴别的出发点。其展布方向,认为是地球化学的形迹。借元素趋势面分析所反映的形态变化特征,有助于追索区域地球化学构造带。

多考文献

(1)汪龙文、黄旭林, 浙江省地质学会第二 届学术年会论文选编, 1964年

〔2〕李志飞,浙江区测,1980年,第1期

〔8〕浙江、江西物探队、安徽332地质队 、 物探研究 所,全国化探会议汇编,1978年

[4]宋国梁、董岩灣,第一屆全國勘查地球 化学学术 讨论会暨专业委员会成立大会报告,1980年

