数据处理在找矿预测中的应用

辽宁冶金地质勘探公司研究所 刘玉祥

在物化探找矿中取得的各种数据,包括 区域性变化、局部性变化、随机性变化三 类。数据处理的目的是把这三部分分解,排 除随机性信息,突出有用信息,了解有用信息的展布,结合地质、构造、矿化等情况, 指出今后的找矿方向。

本文以白马石一南风山地区为例,介绍 磁测、次生晕和原生晕中铜、铅、锌、钼四 元素分析数据的处理及其在找矿预测中的应 用。

地 质 简 述

本区(图1)地层主要为震旦系高于庄组建质白云岩、结晶白云岩、炭质石英砂岩等,区内西部、南部有大片混合花岗岩,在白马石有闪长岩。杨家杖子、大虹螺山、孔家沟、铁炉沟、魏家屯、南风山有似斑状花岗岩和花岗斑岩。水泉、老虎洞、李官屯、李屯有花岗闪长斑岩、闪长斑岩。

区内构造线方向主要为北东向和北西向 两组,与成矿均有一定关系。

本区已知老虎洞铅锌钼矿床, 杨家杖子

钼矿床。此外还有白马石铜矿点、营盘夕卡 岩铜矿点、水泉铜钼矿点、南风山铁铜钼矿 点。

白马石一南风山岩体铜铅锌钼 元素数字表征变化趋势

采用数据频率分布统计特征数、几何平均值表示数据的集中情况或中心趋势。同时进行了方差计算反映岩体中不同元素离散程度(见图1)。

几何平均值:
$$\overline{\mathbf{x}_G} = \mathbf{N} \sqrt{\mathbf{x}_1, \mathbf{x}_2 \cdots \mathbf{x}_n}$$

$$= \left(\prod_{i=1}^{N} \mathbf{x}_i\right)_{\mathbf{N}}^{1}$$
均方差: $\sigma = \sqrt{\frac{1}{N-1} \sum (\mathbf{x}_i - \overline{\mathbf{x}_G})^2}$

式中: N为样品个数, x; 为观测数据。

通过均值及均方差的计算可以看出: (1)铜含量由西向东(至水泉岩体)有增加的趋势;由水泉向东至域台山有减少的趋势;钼含量由白马石至南风山有增加趋

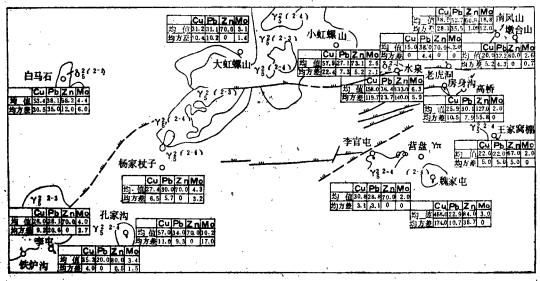


图 1 白马石一南风山岩体元素数字表征位置图

岁者体位置 Υπ—花岗斑岩; Υg(2-4)—细粒斑状花岗岩; δg(2-1)—细粒闪长斑岩; Υg(2-3).
 似 斑状花岗岩

势。但在白马石、水泉、南风山等矿点,铜、钼均方差都较大,说明离散程度大。(2)从北东构造方向来看,西部地区由大虹螺山、杨家杖子至孔家沟、李屯,铜含量变化不大,均方差也较小,说明集中强度不大,离散程度较好;而钼均值有增加趋势,均方差变化不大,说明钼含量向西南至孔家沟略有增大,且均匀。

东部地区南风山、房身沟至李官屯,铜含量变化不大,而魏家屯铜含量有增加的趋势,均方差变化大,说明魏 家 屯 铜 含量较高,但离散程度大,钼含量和均方差,除了南风山较高外,其它岩体均小。

由上述铜、钼含量数字可以得出:铜含量均值较高,而均方差变化较大的有水泉、魏家屯。次为白马石、孔家沟。钼均值较高、均方差变化大的有南风山、孔家沟。次为白马石、水泉。铅、锌含量均值及均方差反映不够明显,不讨论;从产出位置看,水泉、魏家屯、白马石、孔家沟都与主构造有一定距离,并在次一级构造上。

岩体归属问题

(1)对18个岩体进行了野外检查,据野外岩石定名,分别进行两组点群分析计算。

采用Q型群分析方法,研究岩体的归属问题。变量选用铜、铅、锌、铅元素,对数据进行正规化,并计算距离系数,组成相关距阵,利用一级划分法进行分解,作出谱系图。

一组(表1);取距离系数为0.4时,可分为四类。①杨家杖子、王家窝棚、铁炉沟、小红旗营子岩体;②大红旗营子;③魏家屯岩体;④大虹螺山、孔家沟、南风山岩体。

二组(表2): 取距离系数为0.4时,可分为三类。①老虎洞、墩台山D12、墩台山D13岩体;②老虎洞坑、李家屯、房身沟岩体;③水泉、白马石、李家屯岩体。

(2)岩体归属假设检验;由上述可知, 水泉和白马石属一类,杨宗杖子和南风山及 南风山和魏家屯不属一类。这种分类是否正 确,采用铜、钼含量显著性类别进行检验;

①通过水泉、白马石岩体铜含量t检验,计算得出t=0.17。假设给出信度 $\alpha=0.05$,自由度为23,查t分布的双侧分位数(t_{α})表**得**。 $t_{\alpha}=2.07$,则置信区间为一2.07

1.原始數据取对數

表 1

	1	2	8	4	5	6	7	8	9
	相家杖子似	大 虹螺 山似	孔家沟似	铁炉沟似	王家窝棚似	大红旗营子	小红旗营子	魏家屯似	南风山
	斑状花岗岩	斑状花岗岩	斑状花岗岩	斑状花岗岩	斑状花岗岩	花岗斑岩	花岗斑岩	斑状花岗岩	化岗斑岩
Cu	1.34336	1.51688	1,60132	1.43773	1.34505	1,10108	1,30958	2,67077	1.65081
Pь	1.42718	1.46827	1,54662	1.40632	1.34505	1.40669	1.38908	1,35973	1.57897
- Zn	1.84510	1.85065	1,84510	1.84510	1.82998	2.20250	1.89966	1.92608	1.78599
M o	0.54714	0.60037	1,75163	0.54238	0.30103	0.30103	0.33038	0.47712	1,29612

2.数据正规化: xij=[xij- xi(min)]/[xi(max)-xi(min)]

Cu	0.15435	0.26489	0,35048	0.21447	0.15542	0	0.13283	1	0.35022
Pь	0.35110	0.52677	0.86171	0.26193	0	0.26351	0.18823	0.05848	1
Zn	0.14192	0.15524	0.14192	0,14192	0.10561	1	0.27291	0.33634	0
Мо	0.24760	0.30081	0.45282	0.24254	0	0 ,	0.02950	0.17696	1

3.计算距离系数相关矩阵 $dij = \sqrt{\frac{1}{m} \sum (xij - xik)^2}$

									
1	0								
2	0.215	0				!			
8	0.292	0.189	0			ļ.			
4	0.054	0.138	0.544	0					
5	0.216	0.309	0.497	0.181	0				
6	0.455	0.486	0,596	0.458	0.473	0			
7	0.151	0.234	0.418	0.137	0,127	0.372 •	0		
8	0.593	0.449	0.543	0.418	0.448	0.615	0.446	0	
9	0.511	0.341	0.291	0.538	0.716	0.816	0.656	0.724	0

4. 总结列表作分群图

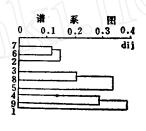
顺序	连结	岩 体	距离系数	IK Kore
1	1	4	0.054	谱 系 图
2	1	6	0.455	0 0.1 0.2 0.3 0.4 dij
8	5	7	0.127	5
4	4	5	0.181	\$
5	7	8	0.446	
6	2	8	0.189	9
7	8	. 9	0.291	

1.原始数据取对数

	1	2	3	4	5	6	7	8	9
	水泉	老虎裥	老虎洞 1 号坑角闪	自马石	东官屯	墩台山D12	墩台山D13	房身沟	李屯
	闪长斑岩	二长斑岩	三代語	闪长岩	花岗闪长岩	二长斑岩	二长斑岩	二长斑岩	花岗闪长岩
Cu	2.19850	1.17609	1.18858	1,72745	1.48961	1,32020	1,25276	1.41306	1,54704
Рь	1,56005	1,51107	1.83346	1,58644	1,45951	1,50753	1.47863	1,47963	1.30103
Zn	2.12471	1,84510	2.15283	1,98789	1,84510	1.77815	1.78002	2 .10505	1.90303
Mo	0.80362	0.30103	0.30103	0.64129	0.30103	0.41274	0.52594	0.30103	0.53720

2.数据正规化: xij=[xij-xi(min)]/[xi(max)-xi(min)]

Cu	1	0	0.01221	0.5391	0.30665	0.14095	0.07499	0.23178	0.36282
Pb	0.51351	0.60551	1	0,46395	0.70422	0.61216	0.66644	0.66456	0
Zn	0.92742	0.17869	1	0,55978	0.17869	0	0.00500	0.87248	0.36159
Мо	1	0	0	0.67701	0	0.22227	0.44750	0	0.46991


表 2

3. 计算距离系数相关矩阵 $dij = \sqrt{\frac{1}{m} \sum (xij - xik)^2}$

1	0								
2	0.801	0							
8	0.744	0.455	0						
4	0.339	0.486	0.511	0					
5	0.720	0.161	0.460	0.423	0				
6	0.597	0.158	0.451	0.416	0.171	0			
7	0.712	0.245	0.571	0.392	0.267	0.120	0		
8	0.633	0.367	0,210	0.416	0.349	0.453	0.494	0	
9	0.563	0.434	0.662	0.286	0.434	0.395	0.405	0.485	0

4. 总结列表作分解图

順 序	连结	岩 体	距离系数
1	6	7	0.120
2	6	2	0.158
8	8	8	0.210
4	47	9	0.286
5	5	8	0.349
6	1	4	0.399

<t <2.07,而实际计得 $t_{\alpha}>$ t (即 0.17<2.07) 故两者无显著差异。钼含量 t 检验,计算 t=0.87,查表得 $t_{\alpha}=2.07$,故 $t_{\alpha}>$ t (即 0.87<2.07),说明两者无显著**差异。**

水泉、白马石岩体铜、钼元素含量**无显** 著差异,属同一类别(表3)。

②杨家杖子、南风山岩体铜含量t 检验,计算t=3.94。假设给出信度 $\alpha=0.05$,自由度为73,查 $t\alpha$ 表得 $t\alpha=2.00$,则置信区间为

水泉、白马石 岩体铜钼元素含量显著性计算 表 8

地区	样品个数	元素	数字	表 征	
	n	Д	均值	方 差	
水泉	17	Cu	158%	28780	
	17	Мо	6.3γ/g	34.8	
白马石	8	Cu	53.4%	928.9	
	8	Мо	4.4γ/g	6.0	

遊統计量
$$t = x_1 - x_2 / \sqrt{\frac{(n_1 + 1)a_1^2 + (n_2 - 1)a_2^2}{n_1 + n_2 - 2}}$$

• $\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

锅元素t检验: t=0.17 钼元素t检验: t=0.87 -2.00<t<2.00,实际 t_{α} <t(即3.94>2.00),故两者有显著差异。钼 t 检验,计算t=8.56,故 $t>t_{\alpha}$ (即8.56>2.00),说明两者有显著差异。

杨家杖子,南风山岩体铜、钼含量有显 著差异。因此不属同一类别(表4)。

③魏家屯、南风山岩体铜含量 t 检验计算,得出t=11.40。假设给出信度 $\alpha=0.05$,

杨家杖子、南风山 岩体铜钼元素含量显著性计算 表 4

地区	样品个数	元素	数字	老 征	
дь ю.	n	20 AR	均值	方 差	
	22	Си	44.6	791.1	
南风山	21	Мо	19.7	144.8	
17 E7 H-7	53	Си	27.4	41.7	
杨家杖子	53	Мо	4.3	10.4	

选统计量
$$t = x_1 - x_2 / \sqrt{\frac{(n_1 - 1)a_1^2 + (n_2 - 1)a_2^2}{n_1 + n_2 + 2}}$$

• $\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

铜元素t检验: t=3.94 钼元素t检验: t=8.56 自由度为26,查 t_{α} 表到 t_{α} = 2.06,则置信区间为-2.06<t<2.06, t>t $_{\alpha}$ (即 11.40>2.06),两者有显著性差异。钼含量t检验,计算t>t $_{\alpha}$ (即7.20>2.06),两者有显著性差异。

魏家屯、南风山岩体铜、钼含量有显著性差异,因此不属同一类别(表5)。

通过岩体不同元素含量显著性假设检验,证明水泉、白马石岩体为一类,杨家杖子、南风山岩体与南风山、魏家屯岩体都不属于同一类。这和群分析结果完全一致。

魏家屯、南风山 岩体铜钼元素含量显著性计算 表 5

地区	样品个数	元素	数字	表 征	
	n	بهر بار	均 值	方 差	
藏家屯	в	Gu	468.0	30582.0	
	в	Мо	3.0	0	
南风山	22	Cu	44.6	791.1	
	21	Мо	19.6	144.8	

选统计量
$$t = x_1 - x_2 / \sqrt{\frac{(n_1 - 1)a_1^2 + (n_2 - 1)a_2^2}{n_1 + n_2}}$$

• $\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

铜元素t检验: t=11.40 钒元素t检验: t=7.20

水泉地区铜含量和磁测数据趋势面分析

据上述结果,认为水泉岩体和自马石岩体很相近(白马石地区铜品位一般为0.3%,最高可达18.08%,矿体规模不大,已地方开采)。水泉岩体铜均值较高,但均方差大,是否有集中部位,还不好肯定。对其已有的次生晕副样进行光谱分析和磁测数据整理,并做了以铜元素和磁测数据为主的四次趋势面分析,以了解岩体展布和铜含量的集中趋势。

(1)地质概况:水泉闪长斑岩岩体位于本区东北部,以震旦纪高于庄组地层为主,构造呈东西向展布。矿化不普遍,仅在水泉矿点有铜钼矿化。

(2)四次趋势面分析及地质解释: 全区磁性不强,一般为200~500γ,由于岩体磁性不均匀及多期脉岩穿入,导致磁异常走向形态不明显。

通过磁测数据四次趋势面分析(图2), 反映岩体呈近东西走向、西宽东 窄 的 楔 形 体。从趋势值看,西部趋势值较密,强度为 100~250γ,范围大,剩余值也较集 中,说 明磁性体比较厚大,东部趋势值比较稀而窄 小,说明磁性体向东变窄,厚度变小。

全区铜含量四次趋势面分析结果(图 3) 表明,20y/g趋势面等值线系北稀东 南密,

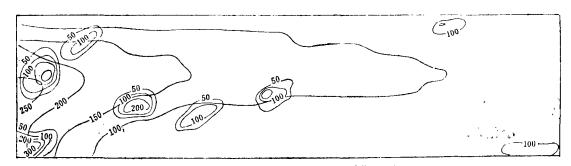


图 2 水泉 一 带磁法 趋势面分析 (单位: ?)

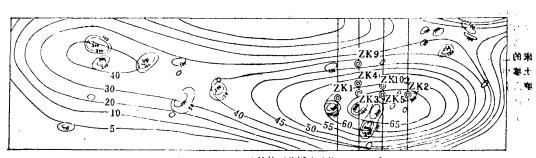


图 3 水泉一带铜元素四次趋势面分析(单位: Y/g)

近似东西向展布,与岩体形态基本一致。有二个突出地段,西部为40γ/g 趋势面等值线,东部为65γ/g趋势面等值线,剩余值都分布在上述二个地段中。东部地区有钻孔控制(图4、5),在12:戈ZK1孔80米、190米及280米处见有三层以钼为主含铜矿体。在20线 ZK5、ZK10 孔也见有二层钼矿体及多层表外钼矿体。可见剩余值的分布与上述见矿有一定关系。但是,这些钻孔都落在剩余值的边部,与剩余值主要部位有一定的距离。

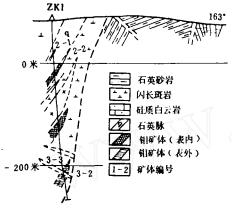
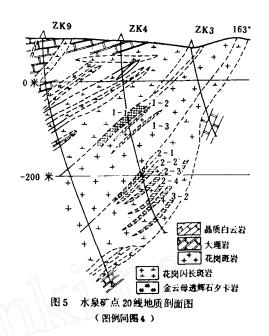



图 4 水泉矿点12线地质剖面图

综上所述,我们认为水泉地区应进一步 开展找矿。根据是:①铜、钼含量数字表征 较高,而且和已知白马石岩体相似。②由四 次趋势面分析可以看出,水泉地区岩体与构

造方向一致,并有一定的含矿性。主要集中在二个地段,东部地段虽有工程控制,但间 距较大,应加密控制。西部地段据磁测数据 四次趋势面分析,岩体有变大变厚的趋势,并具一定的含矿性。

③水泉地区距北东向构造有一定距离, 属于一级东西构造带上,是成矿有利部位。

本文是根据我所和冶金105 地质队 实测数据,由笔者进行整理计算的。工作过程中得到李桂发、王焕恒、闻晶等同志的协助,在此表示感谢。

用植物绿叶内的叶绿素作为一种新的找矿方法

属对叶绿素的产生总是有 些 阻 滞作用。在结构发生变化的叶子内,除叶子的光合系统的其它组成外,有少数叶绿素分子的间隔要大于正常分子间隔。他们认为,叶子内分子结构的这种轻微改变,可以解释受到金属影响的植物之所以具有特殊的光反射性的原因。

为了证实该种方法的准确性,考 林斯博士与张博士到目前为止在几个 试验地区测定了已知的和有怀疑的金 属矿床,包括蒙大拿州的 考 特尔盆 地、华盛顿州的斯皮利特湖区。在野 外观测到的、受到金属影响的植物叶 子的光谱效应, 都在实验室内的控制 条件下得到再现与核实。 用计算机处 理数据, 滤出大部分干扰因素, 从而 灵敏地测出了与矿物有关的信息。

考林斯博士说: "这种新的找矿技术进一步发展的前景是非常有希望的,我们已经证实,这种方法可以探查镲、铜和锌矿床,而其它一些重要的矿物通常都是与上述这些矿石产在一起的,并且用这种技术有希望发现盲矿体。"

樂青摘译自美《工程与采矿 杂志》181卷1980年6月号