在显微鏡下測定矿物比重的方法

王凤閣

固体的比重是指物体的重量与其体积的比值。在 **数**值上与物体的密度相等。

可按如下公式計算物体比重值:

式中: D ---物体比重,

P ----物体重量,

V ---物体体积。

比重是矿物的主要物理常数之一,根据比重值来 鑑別矿物是研究岩石矿物的一种方法。

測定矿物比重值的方法很多,如比重瓶測定法, 量筒法、比重計測定法、扭力天平測定 法 和 在 液体 (重液)中測定矿物比重方法等。但这些方法存在的 主要缺点是:測定比重值时,操作方法比較复杂,工 作时間长。同时,对測定矿物重量不足,粒度細小的 比重值,則产生測定值觀差很大或者不能进行測定。

在显微鏡下測定矿物比重方法,是苏联学者H.M. 鲁金柯, M.M.华西列夫斯基所提出的。

該方法原理是根据量筒法原理。矿物的重量是直接在精确度为万分之一克的分析天平上測定。(毫克为重量单位。)

矿物的体积在带有測微尺的显微鏡下, 在一个特

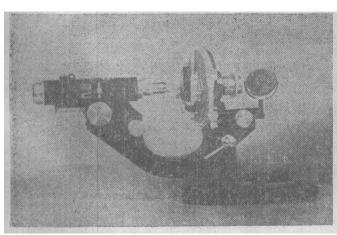


图 1 測定矿物比重时显微鏡装置情况

制的細小玻璃管中注入液体,加入少量矿物后,以共体积增大值来确定。(立方毫米为体积单位。)

測定矿物比重时,显微鏡装置情况如图1:

在显微鏡下測定玻璃管中的液体,加入矿物时, 其体积增大值可按圆柱体积公式計算求得:

$$V = \frac{1}{4} \pi d^2 \cdot h \quad \cdots \qquad (2)$$

式中: V ---液体增大体积(为矿物体积),

d ----玻璃管直径,

π---圆周率 (3.1416),

h ——液面增加之高度。

測定**矿物比重时,**所用細小玻璃管,是根据工作 要求設計的。

根据矿物粒度, 重量不同可用不同規格 玻璃管

(如图 2),主要要求玻璃 管的直径一定均匀相等。必 須在带有測微尺显微鏡下精 确度量。因为在計算积体公 式中有直径平方,度量管径 精确与否,直接影响体积测 定的精度。

本文在 試 驗 工作 过程中,采用三种規格玻

璃管,其主要常数是 事先測好的。

在工作过程中所需要测定的只是管中 液体加入矿物后液面 增加的高度(h)。

可按如下順序进 行測定:

35

图 2 玻璃管規格示意图

- 1. 图中尺寸单位为毫米;
- 2. 口径可由2~5毫米自 由选择; 3. 玻璃管底弧度

大小无关

一、将細小玻璃

管先放在固定盘上,其固定盘規格如图 3 。然后用机械台固定在平放着的显 徽 鏡 載 物台上 (見图 1),注入液体(如酒精),使弯形的液 面置于視域中,利用目鏡測微尺求得第一讀数h1(图 4 之A)。

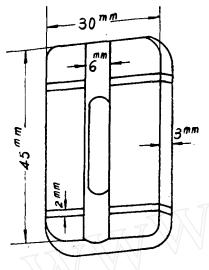


图 3 固定盘規格示量图

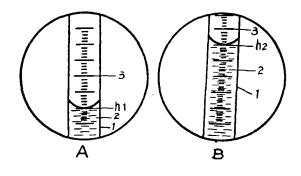


图 4 测定体积时液面在视域中之情形

2. 玻璃管; 2. 酒精; 3. 測微尺。

二、将已称好重量的矿样,通过漏斗,垂直的放 入玻璃管中,可得第二讀数 h2(图 4 之B)。

故高度 $h = (h_2 - h_1) f$ (3) 式中: f —— 为显微鏡測微尺每一刻度所代表的实际 长度。

然后将公式(3)代入公式(2)则体积可得:

$$V = -\frac{1}{4} \pi d^{2} (h_{2} - h_{1}) f \cdots \cdots (4)$$

再将公式(4)代入公式(1)則比重值可得:

$$D = \frac{4P}{\pi d^2 (h_2 - h_1)f} \cdots \cdots (5)$$

公式(5)为最終計算矿物比重值式。

矿物体积测定值是取决于玻璃管中液体柱增加值

的二次讀数的精确度。从公式(3)看出增量 h 的精 确度直接取决于目鏡測微尺刻度讀数 h₁,h₂。因为在 有 0.1 刻度的讀数誤差时,将在不等的 h 值上,可組 成不同的誤差百分数。

利用表 1 主要說明在測定矿物体积时可能产生誤 差的比較。在同样的讀数誤差中, 体积越大 (即 h 值 越大) 則可能誤差越小。

表 1 h 值为假設数值,求得的过程未有写入。 h 值的由来是用目鏡測微尺測量小玻璃管中的液体加入 矿物后增加格数而定。如液体柱增加5个格,则1值 为0.3125毫米。增加 10个格則 h 值为0.625 毫米其他 如表1类推。

製差百分数的求得: 是假設在讀数有₁₀格的誤差 (即0.00625毫米)时,則誤差百分数= $\frac{0.00625}{0.3125} \times 100\%$ 0.00625 ×100%=1%見(表1)。

表 1

測微尺	h 值	在有0.1格讚数	製差百分数(%)
格 数	(毫米)	課 差 时	h - × 100%
5	0.3125	(即0.00625毫米)(δ)	2
10	0.625	<i>"</i>	; 1
30	1.875	"	0.333
50 3.125			0.2

关于液体的选择, 我們用的是酒精。 因为 酒 精 (有机液体) 的表面张力小, 比水容易浸透矿物顆粒 之間的空隙,而被湿潤。所以在测定比重时,細小矿 物在玻璃管中能很快浸沒在液体中。

另外, 在测定之前, 需要将酒精煮沸, 其目的是 使酒精中的空气逸出。冷后再进行测定。

测定矿物比重值时, 所需粒度的大小, 主要取决 干排除矿物顆粒空隙間存在气体的难易程度。矿物粒 度越小,則排除顆粒間的空气越困难。因此,当矿物 粒度均匀时,取得的效果最好。

作者在应月該方法对几十种矿物比重 測 定 試 驗 中,认为矿物粒度在1-0.08毫米变化范围内較为适

测定矿物比重时,所需要的重量是很少的。一般 在50毫克左右,最低可減少到10毫克。但随着矿物 本身的比重值大小,也可以增減,矿物比重值大,則 需要样品重量就大。所需样品一般只装玻璃管体积的

三分之一为宜。

在测定过程中应注意如下几点:

一、在测定比重值时, 实 驗 室 要保 持 室 溫 在 20℃以下,或者装有恒温設备,否則所引起的誤差必 須校正。

二、所用的漏斗 (玻璃的或紙筒) 插入玻璃管 中, 其下端一定要接近液面, 距离大小要根据矿样多 止放入矿物时,粘在管壁上。

三、将矿物通过漏斗放入玻璃管时,一定輕輕放 入,否则因矿物本身的重量冲力,将酒精崩散而易使 矿物粘在管壁上或漏斗下端,影响比重值的精确测定。

四、在显微鏡下,弯形液面界綫調整清楚,視域 纵絲垂直平分弧面。两次液面刻度讀数点(h1、h2) 要統一。最好讀弯形弧面頂点与測微尺刻 度 綫 相 切 点。見图 4 之 A、B。

在表 2 中列举了我們对 15 种純单矿物 比重 測定 試驗, 其测定結果又与一般文献記載的矿物比重值和 比重瓶法测定值进行比較。

該方法与比重瓶法測定値比較表 表 2

順		_		上 重	值值	
序号	矿物名称		称	比重瓶法測 定 値	本方法測 定 値	参考数值※
1	黄	鉄	4	5.12	5.125	4.95~5.10
2	黄	銅	a) -	4.25	4.26	4.1~4.3
3	重	띪	石	4.420	4.435	4.3~4.7
4	方	解	石	2.96	2.975	2.7
5	裼	帘	石	3.73	3.72	3.5~4.2
6	閃	鋅	7)**	4.21	4.235	3.9~4.1
7	螢		石	3.20	3.20	3.0~3.25
8	綠	柱	石	2.89	2.895	2.63~2.91
9	黄		玉	3.67	3.65	3.5~3.7
10	錫		石	6.78	6.785	6.8~7.1
11	鋯	英	石	4.88	4.88	4.68~4.7
12	磁	鉄	矿"	5.23	5.235	5.16~5.18
13	鈳	鉄	Ø.	6.01	6.015	5.3~7.3
14	綠	柱	石	2.83	2.83	2.63~2.91
15	鈳	針 鉗	矿	4.150	4.155	4.05~4.9
	平	均	値	4.289	4.293	

※为文献記載的一般在工作上常用之矿物比重值。

測定是按上述方法和要求进行的: 日 競 6× 物 鏡 3.2×, 目鏡測微尺每一刻度所代表实际长度 f = 0.0625毫米,玻璃管直径 d=4.1250毫米,液体为点 沸后的酒精, 矿物重量在50-100毫克, 粒度在0.16 一0.64毫米。

从表2对該方法与比重瓶法测定比較結果,根据 計算相对誤差公式求得:

$$M = \frac{D_1 - D_2}{D_1} \times 100\%$$

式中: M——为比重瓶法与該方法测定值相对誤差百 分数。

D₁——为比重瓶法15个矿物比重测定平均值。

D。——为該方法对15个矿物比重測定平均值。

通过比較的結果,在表2所列举的15个純单矿物 比重的平均值与一般文献記載的矿物比重值范围是符 合的。該方法与比重瓶法比較所得到的相对誤差百分 数为 0.093%, 这个数值完全小于比重瓶法本身的允 許誤差的精确范围。

根据作者对該方法进行試驗后的改进 与 应 用 結 果,可以得出几点評价:

一、需用矿样很少。表 3 所列举的矿物比重值是 在比重瓶法所需矿样重量少若干倍的情况下获得的。 所需矿样重量最低可減少到10毫克左右。为該方法一 个主要突出的特点。

二、該方法操作比較简单迅速,測定所需时間很 短。在求得一个矿物比較正确的比重值的全部操作时 間,只需要10分钟左右。

三、所需設备简单。都是一般岩矿鑑定工作应有 的設备。

四、方法本身精确程度是比较高的。

最后,应該指出:本文所获結果,仅仅是体現在 数值的测定和对比上。资料和所做的工作还不多,个 后还需要加以改进,提高测定值的精确度,以使其广 泛地应用于矿物研究工作中。