簡易图板計算器

206 队 地 質 办 公 室

鑽探不断的跃进, 鑽探地質工作也必須及时进行 **編录。可是編录**时間被計算岩心採取率占去大部分, 爲此,我队在計算机不够用的情况下,創制了簡易图 板計算器。該計算器制作使用极簡单,不需化錢,任 何人自己均能做; 用处广泛, 可用于乘除法及計算百 分比; 且計算快、节省时間。

一、原理及制做过程:

我們通过若干計算过程发現岩心长度、鑽程、採 取率三者有以下規律:

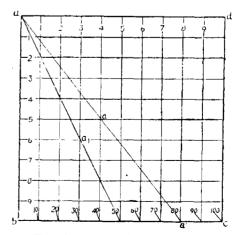
探取率给心长	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
0.1	100				5			
0.2	50	100	T()					
0.3	33.3	66.6	100	$ \rangle$		7		
0.4	25	50	75	100				
0.5	20	40	60	80	100			
0.6	16.7	33.3	50.1	66.7	83.3	100		
0.7	14.3	28.6	42.9	57.1	71.4	85.7	100	
0.8	12.5	25	37.5	50	62.5	75	87.5	100

1. 鑽程不变, 岩心长源增时, 採取率首数成倍 数增加。

鑽程(M)	岩心长(M)	採取率(%)
1	0.1	10
1	0.2	20
1	0.3	30
1	0.4	40
1	0.5	50

2. 鑽程遞增,岩心长不变,採取率逐漸減小至 0 (趋近于0)。

鑽程(M)	岩心长(M)	採取率(%)
0.1	0.1	100
0.2	0.1	50
0.3	0.1	33.3
0.4	0.1	25


3. 在列表过程中还发現有三角形的形状。 后来又把計算的数字放到米厘紙上,发現採 取率数字相同,在一条直綫上,此綫都通过鑽程座标 綫和岩心的座标綫交点, 摸出了三条綫的关系 根据 三条綫作成一个三角形,这样就把簡易图板計算器創 制出来了。

二、簡易图板計算器的制作:

1. 所需材料: 一張米厘紙; 一块与米厘紙大小 相同的木板;活动标尺;一根大头針。

2. 制图:

- (1) 取一張长寬各为12om米厘紙,內取一面积 为10cm²的正方形 abod,将ab,ad 二边各分10等分,从a 向d,b二方向註0-10数字,bc同样分10等分,每等分 与 a 点連起来, 从 b 向 c 点註数字 0、10、20、30…… 100 (c点为100),为清楚起見 abcd 内可以不連緩, 只在 bc 綫上边划一小段刻划(如附图)。
- (2) 标尺。此活动标尺,可用环透明三角板制 作, 在尺中間划一直綫, 在尺一端綫上鑽一孔, 此孔 之大小与大头針粗細适合为好(此孔一定要在活动标 尺中間綫上)。
- (3) 木板同米厘紙一样大小,一面推平,同时 选用不易弯曲之木。
- (4) 将做好的图用胶水贴到木板上,再将活动 标尺孔对准 a 点,用大头針插牢,这样制作就完成了。

三、用法(如上图所示):

(1) 除法: 根据刻度在 ad,ab 边分别查出被除

小直徑两差刃針头介紹

几年来手捆硐探的效率提高很慢,这主要是由于 智岩爆破技术落后的緣故。在爆破方法上,近两年来 随着边掏心爆破法及扩底爆破法的广泛採用,初步解 决了。但穿孔速度低的問題,在今天就成为障碍生产 機械发展的一大問題。五台山队經过多次試驗研究两 差刃針头凿岩的成功,使穿孔速度較原一字型针头提 高近半倍。現将其經驗介紹如下:

一、釺头形状及尺寸

纤头形状及各部尺寸見附图及下表:

	尺	J.	(公	厘)		ß	1	(皮)
S	h	d	d_1	d_2	d_3	a	β_1	eta_2	7
6—10	9	34-36	15	46	15	60°	20°	40°	10°

二、淬火方法

採用活动水槽淬火,其淬火深度为 6-7 公厘, **具体操作方法略**与其他钎子淬火相同。

三、鍛制两差刃釺头方法

在鍛制两差刃钎头时,五台山队是用人工以錘鍛 修成的,效率較低。

今后推广时,可制做 与钎头刃形相似的鉄 模,取出燒好的钎子 在其上鍛制,这将会 有助于鍛钎效率的提 高,适应于大批生产 的需要。

数、除数,将此二数所在点延长得一交点,将活动标尺中間直綫重合于此点, 活动标尺中間綫在 bo 边交点所指数即为商数。

如 $4\div5=0.8$,在ad得-4,在ab边查出-5,此二点延长綫交点a',a' a'' 連綫所指数80为所 求数(需定位)。

(2) 乘法: 与除法相反,在 ab,bc 分別查出二 乘数,将活动标尺中間綫重合 bc 边之乘数。从 ab边上乘数点横向延长綫与标尺中間綫交点垂直向上,在 rd边得一点,此点所指数即为乘积。

四、两差刃釺头凿岩的优越性

1. 穿孔速度較其他类型钎子都高。茲将在同一 閃长岩(七級)內进行打眼时,四类钎头的穿孔速度 比較列于下表:

₽	釘头类型	純	选 尺百分(公厘) 比	备	àE
1	一字型釘头	60	354 100	炮孔内	多細粒岩粉
2	凹字型釘头	60	420 118	炮孔内	多中粒岩粉
3	凸字型釘头	60	456 129	炮孔的	多中粒岩粉
4	两差刃型釘头	60	510 145	炮孔内	多粗粒岩粉

- 2. 两差刃钎头制作简便, 共淬火与 一字型 相似, 但較之耐用而坚固。
- 3. 舒头刃上受力均匀,切碎后的岩粉多为粗粒。 且舒子刃窄,排粉容易,基本上消除了夹舒现象。

五、两差刃釺头穿孔速度高的理論根据

由上图可知,两差 刃中心部分有d,宽度内为空的,在d,及d,刃上是相互交錯的,錯动距离为8。故打鏈时钎刃上单位长度所受的力相应增大,由于刃間位置交錯与里外刃角不等,在钎头着力时产生 扭力短,故眼底处岩石成小块的被切下,这就是穿孔速度高和两差刃钎头凿岩时多产生粗粒岩粉的原因所在。

根据上述理由,这种凿岩方法是先进的,如能用 硬質合金片鐵銲钎头时,完全可以应用于坚硬岩石处 凿岩,从而更进一步提高穿孔速度,这也应成为今后 的試驗方向。

(轉載山西地質)

如50×60=3000,在 ab,bo 分別查出 6 及 5 ,将标尺中間綫与 bo 边上点 5 处之綫重合,ab 边 6 所在点横向延长綫与活动标尺中間綫交一点 a₁,从 a₁ 垂直向上投影在 ad 边交一点,此点所指数即为采积。

(3) 精度: 須根据簡易图板計算器大小而定, 如20 cm³ 大的图板可以讀出 4 位数字(三位数是准确 的),此簡易图板計算器,唯一缺点是自己定位数。

註: 簡易图板計算器如精度要求高还可以放大至 40 cm², 80 cm² 等大小; 在計算过程中, 各交点要准确; 为了数字更精确,除放大外,各刻划应越細致越好。