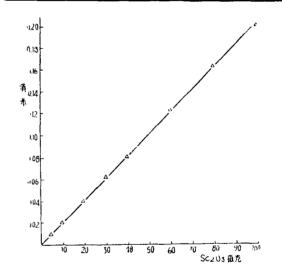
鈧 的 比 色 測 定

万 孑 李全謀

就的有色反应虽然很多,但用作銃的比色測定並不合适,文献會介紹銃的螢光測定,此法旣不特效,要求的条件亦些严格。A. E. Eberle 等提出用茜素磺酸鈉显色測定銃的分光光度法,由于茜素磺酸鈉亦非銃的特效試剂,故 Eberle 等綜合了Miller、Fisher 及 Peppard 等的方法,使所有的干擾元素与銃分离。該法首先用磷酸三丁酯萃取分离稀土,然后,用鉄試剂——三氯甲烷萃取除去鉄、鈦、锆、錫……等杂質,更以釔作載体用酒石酸鉸沉淀銑,最后再用磷酸三丁酯萃取而与釔分离。当矿样中有釷存在时,分离的手續則更为繁瑣。

考虑到如直接用鋼鉄試剂——三氯甲烷萃取后,溶液中可能剩下的仅針、鈾、鋁、鈣、鎂及稀土等元素,这些元素除釷及鈾外,均不被磷酸三丁酯 所萃取。故当矿物中沒有釷及鈾存在时,經过 这 样 萃取后,便可直接用磷酸三丁酯萃取以純化銑。工作中途看到波波夫測定銳的方法,发現与我們與議內步驟基本上相同。

Furman 及 Fritz 等會提到針可以被 剝 鉄 試 剂 ——乙酸乙酯,三氯甲烷或苯和選戊醇所萃取,試驗中我們証实了降低萃取时的酸度为 5% 左右,針也可与鉄、鈦、锆……等一併分离,与 Fritz 的 結 渝 和符,这就使分析手續大为簡化。最后我們用光电比色計完成銃的比色測定。


實驗部份

分別取不同銃量的溶液于一系列100毫升容量瓶中,用水稀釋至約50毫升,加入1毫升10%乙硫醇酸及2毫升 0.1%的茜素磺酸鈉,以稀氮水及盐酸調至溶液剛变成蓮紫色,之后加入5毫升醋酸銨緩冲液(PH=3.5),用水稀釋到刻度,混勻,于 Dr. B. Lange V型光电比色計上用綠色滤光片于100毫升液槽中測定其消光。結果繪于图中。由图中可以看出, Sc₂O₃ 自5至100微克間成一直綫,附合比尔定律,且顏色稳定,在五小时內无显著差別。見表1

表 1 **鉱与茜素磺酸鈉有色物的顏色穩定**度

S. O. v. O	iti	光	E			
Sc ₂ O ₃ r	½ 小时	2 小 时	5 小 时			
10	0.018	0.019	0.020			
40	0.080	0.081	0.085			
100	0.198	0.198	0.201			
	i	1				

钪与茜素磺酸鈉有色物的曲綫

二、磷酸三丁酯 (T. B. P) 萃取鈧的試驗

用 T. B. P. 自 9M 以上的盐酸液中萃取筑,可与稀土分离,盐酸濃度愈大銃的萃取率愈高。T. B. P. 在贴用前应加以处理,除去其中微量的磷酸「酯及磷酸二丁酯等不純物,否则萃取效果不好。Peppard 等提出用 5%Na₂CO₃ 溶液处理二次,Codding 则建議先以 0.1M Na₂Cr₂O₇ 及 0.1M HNO₃ 混合液处理后,再用 10% 的 Na₂CO₃ 洗滌,之后更以水洗二次。波波夫等用两倍体积的 10%Na₂CO₃ 处理后,再用等体积的水洗一次。在我們的試驗中发現利用 Codding 法进行处理后效果最好。T. B. P. 的分层也較为迅速。

取不同量的銃液于小燒杯中,蒸干后,加入15毫

升的農盐酸,轉入100毫升的分液漏斗中,加入10~15毫升的 T. B. P. 激烈振摇2分鐘,之后棄去盐酸层,有机层再用農盐酸洗三次。有机层中的筑用40毫升水反萃。水液中殘留的 T. B. P. 用10毫升乙醛洗滌。此后溶液在燒杯中加热逐去乙醛,按前述方法比色。結果列于表2

養 磷酸三丁酯萃取,則得 Sc₂O₃ 結果

加入 Sc ₂ O ₈ (mg)	0.005	0.010	0.030	0.040	0.060	0.080	0.100
測得 Sc ₂ O ₃ (mg)	0.005	0.009	0.029	0.043	0.058	0.080	0.100

表 2 結果說明鈧的萃取是完全的。

三、釷及其他雜質的分離

Eberle 等对 釷 的分离系于硝酸介質中用亚汞作 載体使釷成碘酸盐沉澱而除去。鉄、鈦、锆等杂質则用銅鉄試剂——三氯甲烷萃取。

Furman 等會提到在10%的盐酸液中釷——銅鉄 試剂用乙酸乙酯萃取时接近完全的分离,但經我們重 复的結果並未得到預期的目的,針的萃取率仅达50% 左右,或甚至更低。

Fritz 等提出在 pH0.3~0.8 的盐酸中,**此、** 鉄等可被鋼鉄試剂——苯及異戊醇定量地萃取,也可用三氯甲烷代替此混合溶剂。我們在 4%, 5%, 6% 的盐酸酸度中进行試驗,結果列于表 3 中。

不同酸度时針的萃取率

加入 ThO ₂ (mg)	HCl%	测程 ThO2*mg	萃取率%	
0.054	4	0.007	87.0	
0.118	4	0.006	94.8	
0.236	4	0.003	98.7	
0.054	5	0.008	85.0	
0.118	5	0.010	91.5	
0.236	5	0.006	97.4	
0.236 6		0.006	97.0	
0.054	6	0.007	88.8	
0.118	6	0.006	94.8	

* ThO₂ 的測定系将用網**鉄**試剂——三氯甲烷萃取 后的水液蒸至近干,干渣用1毫升盐酸(1:1)及 少許水溶解,轉入 25 毫升容量瓶中,之后加入 9% 的酒石酸溶液 2 毫升,10%的盐酸輕胺 1 毫 升,0.15% 的針試剂 2 毫升,以水稀釋至刻度, 于光电比色計上測定其消光。 表 3 結果說明此酸度范圍內針的萃取率在85~98 %之間,針量較高时,萃取率也較高。于是我們确定 以 5 %的盐酸酸度作为分离的条件。銅鉄試剂需品質 优良的白色片状結晶方可合用,变質的試剂萃取杂質 的效果不好,且試剂本身也难于被除去。

为了探究在5%酸度萃取針时能否引起 鈧的 損失,以及有鉄、鋁、鈦等杂質存在时鈧的回收情况。 我們又作了列于麦 4 中的一些試驗,結果說明在此酸 度时,銅鉄試剂萃取鈧的損失甚徵,而在有杂質存在 时,鈧的回收亦甚滿意。

表 4 于 5% HC1 中有針及杂質存在时測得 Sc₂O₃結果*

編号	加入 Sc ₂ O ₃ mg	加 入 ThO ₂ mg	加入杂質量	測 得 Sc ₂ O ₃ mg	偏 達
1	0.020	0		0.019	-0.00£
2	0.020	0		0.017	0.003
3	0.020	0	-	0.017	-0.003
4	0.020	0.054		0.018	-0.002
5	0.020	0.054		0.022	+0.002
6	0.020	0.054	- -	0.019	-0.001
7	0.020	0.118		0.019	-0.001
8	0.020	0.118	_	0.021	+0.001
9	0.020	0.118		0.017	-0.003
10	0.020	0.344		0.020	±0.000
11	0.020	0.344		0.022	+0.002
12	0.020	0.344		0.021	+0.001
13	0.040	0.236	Fe100; Al75;	0.040	±0.000
14	0.040	0.236	Ca75; Mg25.	0.037	-0.003
15	0.040	0.236	Mn25; Ti1.5;	0.038	-0.002
16	0.080	0.118	Bi2.5; Pb5;	0.085	+0.005
17	0.080	0.118	Zn1.0; Sn2.5;	0.078	-0.002
18	0.080	0.118	Mo2.5; Cr0.5; Co2.5	0.082	+0.002
19	0.010		2.0 0	0.009	-0.001
20	0.010			0.011	+0.001
21	0.050	_		0.048	-0.002
22	0.050	-	,	0.045	-0. 005
23	0.090			0.092	+0.002
24	0.090	-	<u> </u>	0.097	+0.007

- *(1)1~12 号的試驗系萃出針后的溶液即显色測定 Sc₂O₃₀
 - (2) 13~24 号中的杂質用銅鍊試剂三氯甲烷苯出后,更用磷酸三丁酯苯取,測定 Sc₂O₃。
 - (3) 19~24号用銅鉄試剂三氟甲烷萃取时,系在10 %的盐酸介質中进行。

表 3

四、礦樣測定結果

矿样按后面听述方法进行分析, 結果 列于 表 5 中。

黑鵭矿中 ScoO, 測定結果

表 5

矿样編号		测	得	Sc ₂ O ₃	%
W001	0.074;	0.076;	0.077;	0.074	
W002	0.018;	0.020;	0.022;	0.017	
W005	0.050;	0.050;	0.054;	0.056;	0.058
W010	0.070;	0.070;	0.076		
委 9	0.042;	0.038			
委 31	0.038;	0.043			

五、測定方法

必需試剂: (一般試剂从略)

- 1. 飒鉄試剂(分析純),白色片状晶体。
- 2. 磷酸三丁酯(特純),商品試剂临用前按下 述方法处理,用多少处理多少。取需用量的磷酸三丁 酯于分液漏斗中,先以等体积含有 0.1M HNO。及 0.1 MK₂Cr₂O₇(Na₂Cr₂O₇) 溶液振搖約30分鐘, 待分清后 棄去水层,其次用等体积10%NO2CO3处理二次,每 次振搖約15分鐘。最后再用等体积蒸馏水洗滌二次。 酸三丁酯乃可应用。
- 3. 茜素磺酸鈉: 0.1%, 过滤后使用。
- 4. 醋酸銨緩冲液: 50 克醋酸銨溶于 150 毫升水 中,用濃盐酸調至PH=3.5,再用水稀釋到250毫升 (每50克醋酸銨大約需用 48.6毫升盐酸)。
 - 5. 乙硫醇酸: 10%。
- 6. 鈧标准液: 秤取 Sc.O.0.05 克溶于 25 毫升 濃盐酸中,用水稀釋至500毫升。或秤取烘去水份之 Sc_(SO₄)₃ 0.1371 克溶于25毫升盐酸中,用水稀釋至 500 毫升。

吸取上述任一溶液 10 毫升,用水稀釋至 100 毫 升,此液1毫升相当于0.01毫克 Sc₂O₃。

分析手續:

秤取 0.5~1.0 克 矿 样于镍坩堝中(注1),用 8~10 倍 Na₂CO₂+Na₂O₂(1:1)熔融,待試样分解完 全后,冷却,置坩堝于燒杯中,以200毫升水浸取, 坩堝洗净后移去。

向浸出的溶液加入盐酸,至酸化后过量10毫升, 加热至黑色顆粒消失。之后,加入10克氯化銨,並用 **数**水中和至有濃氢味(注2),煮沸至沉淀凝聚,靜 置片刻,經快速滤紙过滤,沉淀用 2%NH4Cl(含有 2%NH₄OH) 热溶液洗滌四、五次,棄去滤液。

沉淀以少量热水洗入燒杯中,加6毫升濃盐酸将 沉淀溶解,之后用水稀釋于100毫升之容量瓶中。

吸取10~15毫升 (Sc₂O₃10~120r) 溶液于 100 毫 升分液漏斗中,加入1~2克固体銅鉄試剂,激烈振播 約半分鐘,立即加入10~25毫升三氯甲烷(注3), 振摇一、二分鐘,待分层后棄去有机层,向水液中再 加入0.5~1克鋼鉄試剂並用三氯甲烷萃取。若第二次 加入銅鉄試剂后沉淀很少或溶液不变色,可不再加入 第三次銅鉄試剂。水层繼續以5~10毫升三氯甲烷洗 三、四次,至最后一次三氯甲烷层无色为止。

水溶液移入小燒杯中,蒸下(注 4),注入15毫 升濃盐酸溶解干渣。酸液轉入190毫升分液漏斗中, 以10毫升純制过的磷酸三丁酯萃取鈧。盐酸层乘去, 每次再以10毫升濃盐酸洗滌有机层三次,然后用40毫 升水反萃有机层中的銃、水层移入另一分液漏斗中, 用10毫升乙醚洗涤殘留的磷酸三丁酯。洗过的水液轉 入小燒杯中,加热逐去乙醚。溶液移至100毫升容量 瓶中,加入 1 毫升10%的乙硫醇酸, 證置炎分篇,注 入 2 毫升 0.1% 的茜素磺酸鈉並滴加氨水,仔細中和 至恰变成蓮紫色,加入5毫升醋酸銨湲冲液,用水稀 釋至刻度,混勻。在光电比色計正用綠色滤光片,于 3.5 (或 5.0) cm 厚度的比色槽中測定溶液的消光。 空 白溶液自磷酸三丁酯萃取也与分析样品按同样步骤制 备。

标准曲綫可按实验部份(一)节所述直接制备, 不必經磷酸三丁酯萃取步驟。

結 論

- 1. 提出了在5% 盐酸介質中用銅鉄式剂----三 **氯**甲烷萃取的方法,在此情況下,針与鉄、鈦、鋯… …等杂質一同除去。針被萃取的量在85~98%之間。 免去了用碘酸盐沉淀釷的繁杂手續。
- 2. 省去了 Eberle 在用銀鉄試剂——三氯甲烷 **萃取后用酒石酸簽沉淀鈧及釔的步驟,对鈧的測定並** 无影响。
 - 3. 矿样中含有铀时,用本法不能消除其干擾。
 - 4. 方法的最大誤差不超过±15%。
 - 注: (1) 易溶于酸的矿石可不必用硷处理。酸溶后即用氢

 - (1) 为除于成时的对对小小龙州超过程。 战府和部州国军化按沉淀。 (2) 此处系除去籍矿样品中析出的鹅酸。 (3) 銅鉄武剂极易分解,加入 CHCl₃ 后可阻止**它的**分解,否则以后 CHCl₃ 层很难洗到无色。 (4) 蒸干时若有紅色沉淀析出,系銅鉄武剂未完全**苯**出之故,此时可加入1~2至升濃硝酸,及不含有 磷酸等杂質的純 H.O. 可将颜色视去。