测定矿石中硫化锡的新方法

Л. В. 兹維列夫、H. В. 別特罗娃

錫矿合理分析的基本任务是分別測定氧化錫和硫 化錫。所提出的測定方法都是根据: 用酸处理时, 黝 錫矿(硫化錫)的錫进入溶液中,而錫石(氧化錫) 的踢則留于不溶殘渣中这一事实为基础的。

根据核尔沙的方法〔1〕,黝錫矿用王水溶解; B.B. 杜利沃—杜布罗沃利斯基及10.B. 克利門科的方 法[2]基于矿样在有氧化剂存在时,用鹽酸资沸即黝 錫矿溶解。11.11.沙罗庆(3)叙述在許多企业中所 使用的方法: 即用硫酸处理矿样以溶解黝锡矿。

这些方法中沒有一种能測定矿石中硫化錫的真实 含量,因为除了几乎不溶于酸的錫石外,矿石中常遇 到錫的其他氧化形态: 膠体的氧化物, 次生錫石(黝 錫矿氧化的产物)和"木锡",当用酸处理时,它們与 黝錫矿一起全部或部份被溶解。10. 11. 克尼卜維奇及 10.B. 毛拉奇夫斯基提出的錫矿合理分析方法[4]是 根据用不同濃度的硫酸溶液处理为基础。膠体氧化錫 溶于稀硫酸(1:3);黝錫矿溶于濃硫酸,以锡石形态存 在的錫則于殘渣中測定。但用此法測定硫化錫也未必 可靠。作者叙述此法时曾指出,某些形态的次生錫石 有一部分随同黝錫矿进入溶液中。此外,由于膠体氣 化錫的性質不定(溶解度可能随其天然性質而悬殊很 大),用稀硫酸处理时,其中全部的錫是否均能进入 溶液, 是值得怀疑的。

为了工艺上的目的,在研究含黝錫矿精矿的氯化 作用时,我們察覚:用气体状态的复在四氯化碳的介 質中处理时,黝錫矿起氯化作用并生成氯化錫溶于四 **氯化碳中。**加少量單体硫子四氯化碳中能增加氯化作 用的速度,并保証以黝錫矿形态存在的錫实际上完全 被抽取入溶液中。在此条件下錫石和人工合成的氧化 錫均不起氯化作用。

这种观察到的事实可以作为測定矿石中硫化錫的 新方法的基础。为了分析的目的,我們用溴化法代替 **氯化法。在分析实驗室的实践中,使用 溴** 是較便利 的,此外用溴代替氯,大大地促进了在四氯化碳溶液 中錫的測定。在四氯化碳中溴化作用后,用硫酸溶液 **將錫从有机溶剂**层定量地抽取出来,这样不会生成單 体的硫。用酸性的水溶液將氯化錫从四氯化碳中抽取 出来,是困难的,由于氯化錫的分配系数是不利的。 且由于硫的氯化物起水解,生成大量單体硫的沉淀。

通过一系列的試驗后,我們提出下面的方法測定 矿石和选矿产物中的硫化錫含量。

將研細的称样 0.5~2 克置于乾燥的錐瓶中,加 25毫升四氯化碳, 10 毫升溴水和 1 克單体硫。錐瓶 用玻璃盖住,不加热, 摇动 2.5 小时。然后用乾的或 用四氯化碳潤湿的快速滤紙过滤,流紙上的沉淀用少 量的四氢化碳洗滌数次,減液用来測定硫化錫的含 量。將沉淀棄去,或用來直接測定氧化錫;于發產中 可以測定酸溶性氧化錫及原生錫石。如果所含的硫化 錫显著地多于氧化錫吋,則前者可从試样中总的含錫 量中減去溴化作用后的含量而录出。

为了測定溴化作用后滤液中的錫,濾液(体积約 为 50 毫升) 在分液漏斗中与等体积的硫酸(1:1)-起播动 30 分鐘。从有机溶剂层分开后,按照所推荐 的硫酸性抽取液中定錫的碘量法[4],于硫酸溶液中 定錫。

为了証明上述方法的可靠性,必須确定,在溴化作 用时硫化錫全部能进入四氯化碳 溶 液 中,而氧化錫 (包括膠体氧化錫)却不起溴化作用从而不能进入溶 液中; 还须确定, 用硫酸溶液抽取时, 溴化錫由四氯 化碳层全部进入水层。

証实上述情况的一系列的試驗結果已列入在表 1 中。試驗时采用了:合成的二硫化錫(按照布劳尔法 〔5〕制备的),含 63.8%Sn及34.7%S ;合成的一 硫化錫(5),含 77.35% Sn及22.14% S; 二氧化錫 (按照FO.B.卡略庆法合成的), 含 78.05%Sn;同 样的二氧化錫(但會在 800° 灼燒过的); a 一錫酸 (按照 10.B 卡略庆〔6〕 醬上所描述的制备法获得 的);純黝錫矿样品(从Эрцгебирге—циннвальд 矿 床取得的), 只有下列組成: 14.6% Sn;24.9% Pb: 17.2%Cu;12.7%Zi利4.3%Fe。

由前四种样品的数据可以看出: 合成的硫化錫和 天然的黝錫矿在处理时,全部錫均进入溶液中。在三

用純的制成品和混合物的試驗結果

41	質	称样(克)	錫含量(克)			溶液中測定值 Sn		残渣中測定值 Sn	
物			1	氧化物的	合 計		佔所取硫化物的%		佔所取氧 化 物 的 %
SnS ₂		0.19	0.1106		0.1106	0.1095	99.01	未檢出	
SnS ₂		0.3385	0.2160		0.216	0.2140	99.07	11	-
SpS		0.1965	0.1520		0.152	0.1481	97.43	0.0021	_
動錫矿		0.0555	0.0081		0.0081	0.0080	100.00	未檢出	
SnO2(灼燒过的	勺)	1.8244	7 - ((1.424	1.424	未檢出	_	1.422	99.81
SnO ₂ (未灼燒的	约)	0.9910		0.7735	0.7735	0.0002	_ '	0.7731	99.95
錫酸		1.60	1 0	1.015	1.015	0.00033		1.015	100.00
8nS,		0.0432	0.0276	1.424	1.4516	0.281	101.81	1.422	99.86
SnO ₂ (灼燒过的	ণ্ড)	1.8244		- "			1		
SnS ₂		0.06	0.0387	2.136	2.1747	0.384	99.22	2.137	100.04
8102 (未灼燒的	_ 匀)	2.73			ļ	! !			i
空白試驗		-	_	:	_	0.00024			_

种情形中,残渣完全未发现含锡;在用一硫化锡进行 的試驗中, 发現殘渣只含极少量的 錫, 为原 来含量 的~1.5 %。以下样品的数据証明:在此种試驗条件 下, 氧化錫实际上完全不溶解, 不論它是何种狀态。 溶液中所发現的最大量的錫(0.00033 克)是可以和 **李白試驗数据相比拟的。因此,用此**法处理試样时, 氧化錫的膠体形式一未灼燒的氧化物和偏錫酸一是不 起溴化作用的, 也是不溶解的。表 1 的最后一行有混 合物的分析結果, 此結果說明本法的准确度很高。

因此,当用硫酸溶液抽取时,实际上能粉溴化錫 从四级化砂溶液中完全抽取出来。用溴化錫,硫和溴的 四氯化碳溶液进行的專門的試驗同样也証实了这 一点。

含0.2克錫的溶液100毫升与等体积的硫酸(1:1) 一起搖劲 30 分鐘;如分析手續所述。操作要进行兩 次。所取的錫全部发現在第一次酸性抽取液中;在第 二次抽取液中只有痕量的錫,其量可以和空白試驗数 据相比。

这里所提出的方法曾用以分析了三个样品,这三 个样品过去曾在全苏矿物原料研究所用酸法做过合理 分析。第一个样品是含黝錫矿的精矿; 曾用显微鏡覌 查未发現其中有錫的氧化物。第二个样品一硫化矿, 含磁硫铁矿,黄铜矿,硫砷铁矿,石英;用显微鏡覌 杏主學地发現有与閃鋅矿連生的黝錫矿和細粒浸染的

合理分析結果的比較 表 2 (錫含量用百分率表示)

物質名称	Sn	核尔沙法		杜布	利沃一 罗沃利 基法	溴化法		
	含量	可溶 Sn	不溶	可溶 Sn	不溶 Sn	硫化物 的 Sr	氧化物 的 Sn	
硫化物精矿	3.32		1	3.06	0.26	3.03	0.28	
硫化矿石	1.45	0.73	0.68	0.74	0.71	0.45	1.00	
石英矿石	20.03	1.92	18.15	2.07	17.96	0.015	20.00	

錫石。第三个样品是含錫較富的石英矿石,含有錫 石;其中仅发現有极稀少的硫化物包裹体,未发現有黝 錫矿。第二个和第三个样品曾由克利門科,略尼奇夫 和具索諾夫用化学方法詳細地研究过,我們將他們的 数据与用本法所得分析結果进行过比較(表2)。

三个样品中的兩个样品用新法測定了硫化錫的含 量,根本上不同于用酸法所測定的可溶錫的含量。显 然,在这些样品中,部分的錫是在酸溶性氧化物中存 在的。本法可用于矿石的分析及选矿。

王鼎梅 譯自苏联 "Закодская паборатория" 第23卷12期(1957)