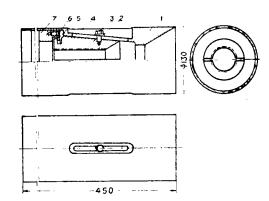
|       |                | 相关曲线型                                            | 单个样品简       | 服職与品                    | 矿化特点                                       |
|-------|----------------|--------------------------------------------------|-------------|-------------------------|--------------------------------------------|
| 算法    | 分佈特点           | 式                                                | 之相关系数       | 位的关系                    |                                            |
| 算术平   | 不密集任何象限        | 水平被以曲<br>義,起伏不                                   | 0-0-2       |                         | 矿化 <b>不受贩福变</b> 大<br>,变小所控制。               |
|       |                | 定之析機                                             |             | 間均无正反<br>比关系            | r                                          |
| 加权平均法 | 人3 教展<br>24 象膜 | 正出親以几                                            | 0 • 4—1 • 0 | 品間或中段<br>矿段平均值<br>間的有量期 | 以在少数情のトゥ                                   |
| 加权    | , ,            | 比较状曲数 不显明的正 反比放状曲数 大豆明的正 反比放状曲数 张,正反比放状曲数 张台波状曲数 |             | 的正比关系                   | 歐変勢时矿化富量<br>矿化往往受大的强                       |
|       |                |                                                  | 幅情况分        | 不明显,而                   | 除构造控制( <b>等</b> 税)<br>开情况下互集 ) 和           |
|       |                |                                                  | 均脈程与        | 正比、反此                   | 部級臨夜化并不動<br>响矿化强度。以矿<br>性形态度集。含矿           |
|       |                |                                                  | 間之相关        | 3.5.5                   | 有壓明的分帶情况                                   |
|       |                |                                                  | 柔数增高        | -55                     | (包括整直的、水平<br>的指平均品位服服]<br>左右有故律的变<br>化现象)。 |

## 2. 計算方法的繁簡程度

我們的編录工作应从提高效率、保証質量来考虑。在保証儲量正确的前提下,应尽量选擇迅速簡便的方法。要保証儲量正确,可进行第四、五种方法的研究对比,若各法計算的儲量和 对誤差在 3 %以內时,可选用迅速簡便的方法(第二节中已介紹)。如某矿由根据矿床特性确定应采用加权法,但根据地質儲量法对比結果,相对誤差在 3 %以內,則可采用算术法。又如用生产储量对比法时,如其中兩种方法計算結果未超过允許誤差,則可在其中选用較經济迅速的方法計算。現將各种計算方法的繁簡程度列如表7:

各計算方法繁簡程度对比表 表 7


| 平均值計算法          | 同数量的<br>試料应用<br>的工时数 | 繁簡程度                                    |
|-----------------|----------------------|-----------------------------------------|
| 加权法             | 100                  | 在脈幅乘品位計算过程中,<br>很容易出錯,計算小数点后            |
| <b>.</b><br>算术法 | 30                   | 达四位。<br>計算中仅有關單的加、除<br>法,且計算位数少(小数后二位)。 |
| 加权一等术法          | 40                   | μ. 7 <b>.</b>                           |

最后,我們認为加权一算术法在具体运用中是符合多快好省的原則的。对于这种方法的簡便 与合理性,希望能广泛的引起地質工作者的注意。

## 鲇桿捞取器介紹

## 杨鍾秀

在資探工程中,发生非內徵桿折衡和脫落事故时,多使用矢錐(雄或雕型)进行处理,但这种方法在操作上有不少困难。比如,不易扭入鑽桿; 扭入时,常因底部的鑽桿亦随之一齐轉动,而扭接不牢,在提昇时容易脫落;特別是当折断的鑽桿上头出現有破裂不規則形狀时,矢錐就不易扭接牢固或根本扭接不上。为此,我队研究試驗成功了"鑽桿擠取器"来代替矢錐。这一方法經几次生产試驗,証明其效果良好,不但处理鑽桿折衡事故迅速,而且也可以用它处理埋置事故。它的特点是:使用时对鑽桿的卡制方便而牢固,却使强力提升和打吊錘、起重机起拔,均不会脫落,同时,不受鑽桿規格限制,其可起导正作用,使用时亦可往升內送水,节約扭接时間,減輕体力劳动,抖可避免因扭鑽桿而造成的人身事故。



捞取器的橘造和作用与水压捞管器类似,不同的就是內外之分。其構造如图所示,由外壳套筒1;方垫块2;六方螺釘3;2块齿瓦組成雏形筒4;齿瓦 運架5;小螺絲釘6;滑体7。共七个零件組成。主要是通过錐型筒兩块齿瓦和外壳套筒的斜度作用;使 鑽桿进入錐型筒时,齿瓦被鑽桿向上推动,使齿瓦內徑張大,当提升时齿瓦便牢牢夾住鑽桿。

使用时,將此工具接在正常資进的岩心管上(但一般不应短于5公尺),然后下入孔內,在快到折断 鑽桿上头时,則用給进把輕輕降落,將折衝鑽桿收擴 进入撈取器几公尺 左右后,即可提升。此时撈取器 即自动士緊環桿。使用前应注意檢查各部 动作 是 否 良好。