石灰石中鈣鎂試驗总結报告

鞍山分局檢驗室 郭小偉 花梅珍

緒言

后,用草酸銨沉淀鈣,使鈣与鎂分离,再用磷酸氫二 銨沉淀鎂。手續繁而費时多。

近年来, EDTA 測定鈣、鎂的应用甚为广泛。在 地質局化驗会議上,電梅廖夫專家也會提到必須广泛 地利用特里隆, 因此結合本室情况, 我們試驗了E D TA (ethglene diminete traacetic acil) 直接測定石灰 石中之鈣、鎂。方法快速,大大地簡化了操作过程, 縮短了所需时間。在質量上又能滿足地質要求。

方法原理

在硷性中EDTA与 Ca*和Mg* 生成极稳定的无色 內絡物,其反应式如下:

 $Ca#+H_2T=\longrightarrow CaT=+2H^+$ $Mg^++H_2T^- \longrightarrow MgT^*+2H^+$

註: Na,H,T 代表

$$\begin{array}{c} {\rm NaOOC_CH_2} \\ {\rm HOOC_CH_2} \end{array} \\ {\rm N_CH_2_CH_2_N} \\ \begin{array}{c} {\rm CH_2_COONa} \\ {\rm CH_2_COOH} \end{array}$$

根据报告, 鈣之內絡物不稳定常数为2.6×10⁻¹¹, 镁內絡物不稳定常数为 2.0×10°(1)。

紫脲酸銨(Murexide)在酸性和中性中为紅色。由 于其离解出酸根 (R), 在硷性中 (PH>11) 为紫 色。其反应式如下:

 $NH_4R \rightleftharpoons NH_4 + R^-$

註: NH₄B代表

$$OC \left\langle \begin{array}{c} NH-C \\ OH \\ OO \end{array} \right\rangle \begin{array}{c} C-NH \\ OO \\ OO \end{array} \right\rangle C-NH \\ CO$$

在有 Ca# 存在时, 在硷性中产生下列反应:

$$R^-+Ca^+\xrightarrow{PH=12}CaR^+$$

EDTA与 Ca+ 的絡合物,比 Ca+ 与紫脲酸铵的

絡合物更稳定。故在 EDTA 滴定 Ca* 时,可用紫胀 酸銨作为指示剂。在終点时,EDTA与所有的 Cat 結 合成无色内絡物,而游离出紫色的 R ,根据这一点 可辨別終点。

$$PH=12$$
 $CaR^++Na_2H_2$ $T\longrightarrow Na_2(CaT)+R^-+2H^+$ 紅色

同理、以鉻藍黑(Eriochrome Blue Black R) 在PH=9-10可作为測定鈣、鎂合量(或單独定鎂) 的指示剂。

在EDTA 滴定时,則

根据鈣、 藥合量及鈣之結果, 即可原出鎂之含 量。

干扰离子

Fe*, Fe*, Al*, Mn*, Cu*, 能干扰鈣, 藥的測 定。但在石灰石分析中, Fe、Al、均已提出,故无影 响。NH4+(由于影响 PH 的調节) 与 Cu# (蒸餾水 中) 的干扰, 在石灰石系統分析中較严重。故會重点 試驗了NH4+与Cu+之影响。

(甲) 銨鹽影响

NH₄+鹽对于 Ca+終点的干扰, M, M, Core-BAHOBA[2]已有試驗。实际上,NH4+ 鹽对鈣、鎂合 量的測定,也有类似性質的干扰。會取标准CaO100mg, Mgo 2 mg, 緩冲溶液20ml (PH=10, 67gNH₄Cl 溶 于570ml25%NH₄OH中用蒸餾水稀釋至1000亳升), 0.2% 發藍黑指示剂 8 滴 (0.2g 發藍黑加入 10ml 緩 冲溶液,用无水乙醇稀釋至 100ml),10% 硫化鈉 1^{ml},总体积为 100 毫升。进行了銨鹽影响的試驗。

結果如下:

CaO mg/1000	Mgo mg/100CC	加入 NH ₄ Clg	E.D.T.A. 消耗 ml 数
100	2.0	0.0	27.70
100	2.0	0.5	27.70
100	2.0	1.0	27.70
100	2.0	2.0	27.00
100	2.0	3.0	加指示剂略显紅色
100	2.0	4.0	加指示剂即星藍色

表 I 銨鹽对滴定之 影响

从上表看出,銨鹽之量在100毫升溶液中不能超过 1.5g (因加入1克,从处理样品到滴定时,大約有0.5克),否則結果即偏低。这显然是銨鹽过多,PH 不能正确調整之故。

(乙) 銅之影响

在PH=9-10时, Cu⁺与络藍黑形成紅色絡合物,这种絡合物在EDTA过量时,額色并不消退(3)。因此影响鈣、雙之測定。曾吸取了不同量之 Cu,总体积为 100^{ml},加入緩冲溶液 10 毫升(PH=10),0.2% 络藍黑指示剂 8 滴,試驗了 Cu 的影响。結果如下表:

MgOmg/100ml	Cu mg/100ml	E.D.T.A. 消耗之 ^{ml} 数
2.0	0.0	0.70
2.0	0.023	0.70
2.0	0.046	0.75
2.0	0.060	0.82
2.0	0.12	3.0

表 II 銅之干扰

从上表看出,在100毫升溶液中,銅之含量超过0.046mg.即有影响結果之可能性。蒸餾水的含銅量,往往可以超过上述数字,虽可用多加指示剂来消除,但多加指示剂使終点不清。故采用了加硫化鈉来消除銅的影响[4]。

(丙) 鎂对鈣之影响

在工作中发現,当 MgO 的含量达到 10% 以上时, CaO 即有偏低之現象。因此用标准液进行了試驗。总体积 100 毫升,加入 7 毫升 20% 氫氧化鈉,紫脲酸銨指示剂少許(約0.3 mg),用 EDTA 滴定。

另一組則加入蔗糖,碳酸鈉,以消除Mg之影响(5)。 結果比較如下:

CaO	加入、 MgOmgatte	未加廉 陶 Na₂CO₃	加入蔗糖一 Na ₂ CO ₃
理論値	MgOmg数 (100 ^{ml} 中)	CaO 誤差	CaO 誤差
30.64	0.0	30.72 +0.08	30.66 +0.02
30.64	5.0	30.66 + 0.02	30.66 + 0.02
30.64	10.0	30.38 - 0.26	30.44 - 0.20
30.64	15.0	30.10 - 0.54	30.44 -0.20
30.64	20.0	29.96 -0.68	30.52 - 0.12
30.64	25.0	29.82 - 0.82	30.52 - 0.12
30.64	30.0	29.54 -1.10	30.44 -0.20
30.64	35.0	29.42 -1.22	30.38 -0.26
30.64	40.0	29.26 -1.38	30.52 - 0.12

表 II 雙对鈣之影响

从上表看出,高含量的**鎂**,影响鈣的結果。加入 蔗糖碳酸鈉可避免之。

标准液測定鈣鎂的試驗

根据以上的情况,对鈣,鎂进行了試驗。总体积为 100^{ml} ,含有不同量的鈣,加入 7毫升 $20\%^{\text{NaOII}}$,紫脲酸銨指示剂 0.3-0.58 ,用 $^{\text{E.D.T.A.}}$ 規定液滴定。結果如下:

CaO 理論	値	CaO 測 得 值	誤	差
11.97		11.97		0.0
23.94		23.94	0.0	
35.91		35.94		-0.01
47.88		48.00	+	-0.02
59.85		59.84	-	-0.01

表 Ⅳ 測得鈣之結果

CaO		MgO	
加入 mg 数	理論値	測得值	誤差
47.88 47.88 47.88 47.88 47.88	9.80 4.90 2.94 1.96 0.98 0.49	9.79 5.00 3.13 1.96 1.07* 0.40*	$ \begin{array}{r} -0.01 \\ +0.10 \\ +0.19 \\ 0.00 \\ +0.09 \\ 0.09 \end{array} $

意。在这基础上,进行了溶液中有鈣存在,測定鎂之 含量。在100毫升溶液中,含有47.88毫克 CaO,不 同含量的镁,加入緩冲溶液 (PH=10) 20ml, 10% Na₂S1毫升,0.2%,鉻藍黑指示剂8滴,結果如表 V:

从表下看出,虽有大量的鈣存在,但对鎂之測定 一般还是使人满意的。但是低含量的鎂波动則較大。

对测定低镁(<1%)方法之討論:

根据試驗, 我們認为 <1% 的镁是不容易做准 的。故會采用加入过量的 EDTA, 然后再用标准的 MgSO₄·7H₂O 进行反滴。但終点稍有誤差,对結果 影响还是很大的。加入标准铁及鋅[7],以及在光电 比色計中进行滴定[8],虽可在一定程度上減少終点 之課差,但幷不方便。因此,我們會試驗了低含量鎂 的比色。

(甲) 比色測定少量的鎂

根据文献[6]可用比色法測定水中的镁,用鉻黑 (ErOchrome Black T)作显色剂。 我們企图在加入 **路藍黑指示剂后,若发現紅色不深,立即进行簡單的** 目視比色測定鎂,用鉻黑时測定鎂之 PH最好为9.52 但鉻藍黑(Eriochrome Blue Black R) 比色測定鎂之 最好 P H 还未見到。因此, 會做了不同 P H 对镁結果 影响之試驗: 在不同的PH溶液中(用PH計校正), 加入 20ml 緩冲溶液 (PH不同), 0.2% 鉻藍黑 1 毫升,加入 4.90 毫克标准氧化镁,稀釋至 100 毫 升, 苏联 $\Phi \ni K \longrightarrow M$ 比色計, 藍色濾光片进行比色。在 另一組試驗中,我們試驗了鈣一鉻藍黑絡合物与PH 的关系, 結果如图1。

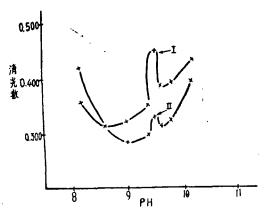


图 1 PH对鎂发色的关系

I **鎂一**鉻藍黑曲線;

从图 I 可看出,同样,铁发色最好 是 在 PH= 9.52, 在此时鈣对鎂的影响最小。但必須严格控制, 因为在此时出現了"高峯"。若对 Р Н 的控制稍一不 慎, 則其消光数迅速下降。这在大批生产上是不方 便的。

(乙) 达旦黃(Titer yellow)比色

鲜的比色,一般在 NH₄+ 存在时甚困难。但在采 用达坦黄比色时, 曾有文献[7] 認为INH4+ 不太多时 可无影响。因此, 我們會对达旦黃比色时的一些干扰 离子进行了試驗。

(1) 干扰离子:

(a) 銨鹽的影响:

一般文献上都指出銨鹽对測定的影响。有的是將 溶液蒸乾除去銨鹽。如堯[7]曾作了試驗,認为銨鹽 在最后溶液中,含有 0.2g 时对結果无影响。我們亦 做了試驗。其条件为含有一定量的氧化镁加入不同量 的銨鹽, 1毫升5%鹽酸羥氨, 5毫升动物膠一蔗树 溶液(0.5克动物膠,15克蔗糖溶于500毫升水中), 10毫升 2 N NaoH, 15 毫升 0.02% 达且黄,总体为 50毫升, 放置 30 分雖后, 在德国 Dr. Lange Mo oll V比色計, 540m⁴左右进行比色, 結果如下:

加入NH4+量	消光数	加入NH ₄ +量	消光数
0.00	0.310	0.35	0.315
0.05	0.310	0.40	0.322
0.10	0.310	0.45	0.318
0.15	0.320	0.50	0.312
0.20	0.315	1.00	0.290
0.25	0.310	1.50	不显色
0.30	0.325		

表 丌 銨鹽对鎂之影响 从表\T可以看出, 銨鹽到 0.5 克还无影响, 甚至

加 入 Na+ 量	滑	光	数
0.00		0.490	
0.05		0.496	
$0.10 \\ 0.15$		$0.500 \\ 0.500$	
0.13	1	0.501	
0.25		0.497	

表 呱 鈉鹽对鎂的影响

可到18。所以將銨鹽控制在这一范圍,对測定的結果是无影响。这样就有可能在系統分析中,分液进行 鎂的測定。

(b) 鈉鹽的影响:

考虑到在 Sio, 系統測定鎂熔融时帶入 鈉鹽的問題。故又做了鈉鹽影响的試驗。其它条件与上同,仅加入不同量的鈉鹽。在苏联 ΦЭК—M 比色計,綠色 滤光片,5 Cm比色皿进行比色,其結果如表 ΥΜ:

从表**呱**看出,在最后的体积中 0.58 (分解試样 是 0.38 ,吸出 5 毫升为0.0158) 納鹽,对結果的影响是很小的。故可用在 SiO_2 系統中鎂的測定。

(c) 錳的影响:

在有鹽酸羥氨存在的条件下,进行了Mn 对測定影响的試驗。条件为 0.58 鹽酸羥氨, $0.28^{\rm NH_4Cl}$, $5^{\rm ml}$ 动物膠一無糖, $10^{\rm ml}$ $2^{\rm N}$ NaoH, $15^{\rm ml}$ 0.02%达且黄, $3007^{\rm MgO}$,总体积为 $50^{\rm ml}$,在苏联 $^{\rm DSK}$ —M 比色計 30 分鐘后,进行比色,結果如下:

加入Mn之量	消	光	数
0.00	75	0.740	
0.01		0.730	
0.02		0.730	
0.03		0.750	
0.04		0.760	

表 匯 锰对镁的影响

从上表看出, Mn 对結果的影响并不夭, 在 0.3 mg 以上略有偏高現象。但在一般破酸岩中其含量不可能很高。

(d) 鈣的影响:

根据文献指出,鈣对鎂的測定有影响,因此在含有一定 MgO 的溶液中,加入不同量的 CaO ,其它条件同上,在苏联 ΦΘK—M 比色計进行比色。其結果列于下表

加入 MgO r	加入CaOmg	消 光 数	
300	0.00	0.660	
300	5.30	0.740	
300	7.95	0.730	
300	10.60	0.760	
300	13.25	0.765	

表 IX 鈣对鎂的影响

由上表看出,鈣之量到一定數值时,含量之多少 对結果无影响(⑤已近于 50% 的^{CaO})。 在繪制标准 曲線时,我們可加入一定量的 ^{CaO} ,即可避免鈣对 雙的影响。

(2) 沉淀色素的稳定度:

曾做了一系列的数据,試驗顏色的稳定度。其条件为: 5 ml 試样溶液,1 ml 5%鹽酸經氧,5 ml 动物膠一蔗糖溶液,15 ml 达且黄,10 ml 2N NaOH,稀釋至 100 ml 在德国Dr、Lange Moclell TLL色計540 ml进行比色。結果如下:



图 2 沉淀色素与时間的关系

上图看出,顏色是非常稳定的。同时文献〔7〕之 作者認为氧化鎂之显色反应緩慢,須靜置 30 分疏后 再比色。但从本試驗看出在 10 分鐘之后,显色反应 卽完全。故我們認为,发色后卽可进行比色。

(3) 其它:

(a) 試剂加入的次序:由于試剂加入的次序不同,往往就能影响結果。在此方法中,我們認为先加NaOH后加达且黃,沒有先加达且黃后加NaOH好,按后者加入,反应灵敏度要高一些。假如按前者次序加入,則結果有偏低現象。(标准曲線 按 先 加 达且黄,后加NaOH),現举一例如下:

加入試剂的次序	原結果	測定結果
先加达旦黃 后加NaOH 先加NaOH	0.535	0.520
后加达且黃	0.535	0.280

表 🛚 加入試剂的次序对镁的影响

由上表看出,由于加入試剂次序的不同,对結果 的影响很大。

(b) 关于加入鹽酸經**氨的問題**,为了消除 Mn 的影响,可加入鹽酸經**氨来**消除之。但在无 Mn 存在时亦应加入鹽酸經**氨。**因为除了能將**猛**还原之外,鹽酸經**氨还可以使額色稳定。**

操作步驟

称 0.58 在 105-110°C烘乾之試样,置入250毫 升燒杯中,用少許水潤湿之,滴加濃 HCl (大約3ml) 至 CO_2 停止发生,加入(1:4) HCl 30ml ,加热溶解,乾涸,用 3ml (1:4) HCl 抽出,用水稀釋至 20ml ,加入 10ml30% NH_4Cl 2-3 滴 甲基紅用 1:1 NH_4OH 中和,资沸滤过,滤液接入100ml容量瓶中,用 2.5% NH_4NO_3 洗滌。 (A液)

从 A 液中吸出 $20^{\rm ml}$,置入 $250^{\rm ml}$ 三角版中,稀釋至 $100^{\rm ml}$,加入 20% 蔗糖 $1^{\rm ml}$, $0.2^{\rm MNa}{}_2^{\rm CO}{}_3$ $2^{\rm ml}$,滴加 20% NaOH 調节 PH=12,加入 0.5-0.58 紫脲酸銨,用 0.1 N EDTA 規定液滴定,終点 顏色由紅色变紫色。結果如下計算:

$$CaO\% = \frac{V \times N \times 0.002804}{$$
試样重

V: E.D.T.A.消耗之 ml 数

N: E.D.T.A.的濃度

吸 A 液 20^{ml} 稀釋至 100^{ml} ,加入10%Na $_2$ S 1 ml,緩冲溶液(PH=10) 20^{ml} ,0.2%,鉻藍黑 8 — 10 滴,用 0.1NEDTA 規定液滴定。終点由酒紅色到淡藍色,結果如下計算:

V 2: 路監黑指示剂所消耗 EDTA的ml 数

V: 紫脲酸銨指示剂所消耗 EDTA的 ml 数

N: EDTA的濃度。

(註:此为測定1%以上之鎂)

吸 A液 5 ml 于 50ml 容量瓶中,加入 1 ml 5 %鹽酸羟氨, 5 ml 动物膠一蔗糖溶液, 15ml0.02% 达旦黄,10ml 2 N NaOH', 稀釋至刻度,輕輕搖勻,在 540m^μ 进行比色。

(註此測1%以下的鎂)

測定結果示例

編号	重量法	比色法	誤 差	編号	重量	比色法	誤差
1	0.86	0.89	+0.03	6	0.56	0.56	0.00
2	0.64	0.61	-0.03	7	0.44	0.45	+0.01
3	0.54	0.55	+0.01	8	0.39	0.38	-0.01
4	0.51	0.51	0.00	9	0.36	0.37	+0.01
5	0.50	0.47	-0.03	10	0.22	0.26	+0.04

表 🏿 达旦黄比色测定低镁的結果

編	CaO 36				MgO%	
号	KMr.O ₄ 法	L.D. T.A法	誤 差	1.g ₂ 1 ₂ 0 ₇ 法	上.D. T.A法	設差
1	45.36	45.39	+0.03	1	•	+0.03
2	53.98	54.00	+0.02	0.40	0.45	+0.05
3	51.58	51.64	+0.06	0.91	0.81	-0.10
4	49.84	49.82	-0.02	1.63	91.40	-0.23
5	49.50	49.30	-0.20	3.06	3.10	+0.04
6	48.83	48.59	-0.24	0.62	0.62	0.00
7	47.94	48.14	+0.20	1.18	1.24	+0.06
8	37.97	37.99	+0.02	5.48	5.39	-0.09
9	36.12	35.96	-0.16	10.87	10.88	+0.01
10	25.65	25.52	-0.13	15.04	14.97	-0.17

表 🍱 測定石灰石中鈣,鎂的結果

結 論

- 1. 根据試驗,此法可測定石灰石中鈣、鎂。建 議低于2%的鎂用达旦黃比色
- 2. 达旦黄比色測定低含量**(**(<1%)誤差不超过**土**0.1%**,**E.D.T.A法測定鈣,誤差不大于土0.5%(絕对)
- 3. 若單独要鈣时, 建議加入三乙醇胺以覽蔽, Fe*、Al*、直接用二乙胺四腊酸二鈉进行滴定。

考 資 料

- 1. 周南: 化学世界 XI. 345—348 (1956)
- 2. М.М.Сочеванова: химические физ-хим методы аналза минорального сырья р,77 (1955)
- 3. К.В.Яцимирский: Применение Комплексонов Ваналитической химии зав.лаб.хх1 1149—1157 (1955)
- 4. Н.Г. Фесенко: Современные методы химического Анализа природной воды р. 25 (1955)
- 5. Бонд. Таккер: РЖХим. 31867 (1955)
- 6. Allen young T.R. Smeet and B.B. Baker Aral Chem 27.356 (1955)
- 7. 鄭堯: 化学世界 紅. 89-91 (1956)
- 8. Bennie Zak, W.M.Mindman, and E.S.Bagrnoh: SpectroPhotometric titration of Spinal flind Calcium and magnesium Anal chem 28. 1661—1665, (1956)