华北地台北缘绿岩带与金矿演化系列

王时麒

（北京大学地质系）

华北地台北缘早前寒武纪变质杂岩带中绿岩带分布广泛。与国外典型绿岩带对比，具有超镁铁质岩石不发育、变质深、构造变形强烈、个体面积小等特点。这是由于华北地台北缘活动性大之故。绿岩带中金矿分布甚广，按成因类型可分为沉积变质型、变质热液型、混合岩化热液型、岩浆热液型和叠生型等。构成以绿岩建造为原始矿层的多时代、多种成矿作用、多种成因类型伴随产出的成矿演化系列。

关键词：华北地台，绿岩带，金矿床，成矿系列

华北大陆各中内蒙古、河北、辽宁、吉林四个省区，东西长约2000km，南北宽约100km。该区早前寒武纪变质杂岩广布（图1），西部内蒙古境内有乌拉山群、三合明群和集宁群，中部河
北境内有崇礼群、密云群、迁西群、滦县群和朱杖子群，黑龙江水文区有建平群，东部辽宁、吉林
境内有鞍山群、清原群、龙岗群等。该带是我国最重
要的金矿带之一，金矿床分布甚广，类型众多，大
部分产于台区的变质岩系中。近来，发现的大型金矿有100多个，找矿的前景和潜力很大。多年来结合生产已做了许多工作，但缺乏全面系统的工作，因此进一步综合研究该区的成矿规律和成矿演化系列，查明成矿控制条件，对扩大金矿找矿具有重要的实际意义。

本区绿岩带的特征

对该区金矿成矿作用的认识，绿岩带是个基本问题。众所周知，太古宙绿岩带普遍含金，有“金
矿带”之称。它在全世界金矿中占有极为重要的地
位，其产量约占世界产量的20%左右，如果将占世
界一半的古元宙兰德式超基性岩金矿当成是来源于周
边绿岩带的古砂金矿的话，其意义就更加重大。世界
上许多大型、特大型金矿产生于绿岩带，其中的金
矿类型多种多样。过去认为主要有石英脉型和与条
带状含铁建造有关的层控型。80年代以来在加拿大
安大略省瓦金绿岩带中又发现了层控浸染型的赫姆
洛特大金矿，显示了绿岩带产金的巨大潜力。该带在
绿岩带中进一步找金矿开辟了新的境界。

由于我国华北地台的结构和发育历史的特殊
性，在我国地质界对绿岩带的认识尚存在不同的看法。有肯定派，也有否定派。肯定派中也有狭义和广义的不同观点，但对在华北地台早前寒武纪变质杂岩带
普遍发育火山一沉积岩系的事实和大量出现的金矿
与这些火山一沉积岩系密切有关是普遍公认的。作
者认为，我在地质史在大陆上的太古宙地体的发育特点有很大程度的相似性，冈仁波齐绿岩带普遍存在，具有全
球的一致性，是地壳发展早期的共同特征。我国华
北地台广大地区发育的许多太古宙火山一沉积岩系有
绿岩带的基本特征，应该看成是广义的绿岩带，如
该区乌拉山群中的东五子山绿岩带、三合明绿岩带、
崇礼群中的小营盘绿岩带，迁西群中的遵化绿
岩带，建平群中的丁厂沟绿岩带，清原群中的红
透山绿岩带，龙岗群中的五道沟绿岩带等。与南
非、澳大利亚等被认为是典型的早前寒武纪绿岩带
对比，本区绿岩带与它们的主要不同点是：

1. 绿岩带下部的超镁铁质岩不发育。据目前
报道的资料，在这些绿岩带中发现了超镁铁质岩
片，有些化学成分相当于科马提岩，但分布零散、
规模很小。多呈一些透镜体和块状散布在火山一沉
积岩系中。尤其是至今尚未发现公认的典型的真岩
结构。

2. 绿岩带上的沉积岩群中主要发育一套粉砂质的粘土和半粘土岩、铁硅质岩及火山凝灰岩等，而典型的铁纹岩和磨拉石建造不发育。

3. 变质变深。国外典型的绿岩带是浅变质的绿片岩相，而我国华北地台的绿岩带主要是中深变质的角闪岩相和麻粒岩相。这种情况给原岩恢复工作带来很大困难，往往造成众说不一的状况。

4. 构造变形比较强烈。岩石遭受多次构造变动，塑性变形和面理的构造置换特别强烈，叶理普遍平行和整合化，从而使绿岩层序复杂化，边界模糊不清。这给恢复绿岩的层序和边界的确定造成困难。

5. 个体规模比较小。绿岩带的分布比较广泛，但每个绿岩带的面积比较小，一般是几至几十km²。

这是由于华北地台总规模较小、固体程度低、活动性较大、多次构造活动多期岩浆活动所造成的。

成矿作用是整个地质作用的一个部分，应该在研究地质作用总进程中查明成矿作用的规律性。因此，对我国绿岩带金矿的研究应该仔细分析对比国内外绿岩带的共性和特性，并结合我国绿岩带发育的特点来总结其成矿的特征和规律，以扩大绿岩带的深一步找矿。

金矿类型和成矿系列

该带金矿分布广泛，类型众多，成矿时代不一，归纳起来，主要有以下几种成因类型：

1. 沉积变质型金矿

系指在沉积或火山一沉积层中沉积成矿，在区域变质作用中进一步富集而形成的金矿床。矿体基本沿一定层位展开，与岩层整合，呈层状或似层状。因受变质作用改造具有一定热液作用特征，但不显著。目前本区绿岩带中仅发现一处，即红透山绿岩带中的龙王庙金矿。该矿产于红透山组的薄层互层岩带中部，由条带状黑云斜长变粒岩、含石棉黑云斜长变粒岩夹薄层条带状含磁铁闪石英片岩、绿泥黑云角闪片岩、黑云斜长片岩及黑云浅粒岩等岩石组成，原岩系一套火成一沉积岩系，岩性有长英质凝灰岩夹少量熔岩，正常沉积的泥质岩和砂岩、铁硅质岩。据初步资源化调查长800m，宽3~50m，其中矿体最大者长600m，厚2.93m。金
的最高品位为20.78g/t，一般1～3g/t，平均品位较低。围岩蚀变有黄铁矿化、硅化、绿泥石化等。
矿石金属矿物组合主要为黄铁矿、磁铁矿、黄铜矿、方解石、自然金等。矿床形成环境和成因与红透山铜～铁锌硫化物矿床基本相同，原为火山喷气沉积成矿，后经变质作用的改造。

2. 变质热液型金矿

系指含金的沉积层或火山沉积岩层，在区域变质过程中聚集的热液作用下所形成的热液金矿床。成矿部位多与韧性剪切带或断裂带有关。这类金矿床在本区主要呈含金石英脉产出，形成于大规模区域变质期。在全区各绿岩带中分布广泛，金矿规模一般较小，如瑞虎山绿岩带东南五分子绿岩带中的十八倾金矿、河北崇礼区小营盘绿岩带中的张金庄金矿等。

3. 混合岩化热液型金矿

系指含金的沉积层或火山沉积岩层，在超变质混合岩化或变质岩化过程中聚集起来的热液作用下所形成的热液金矿床。这类金矿床在本区亦分布广泛，主要呈含金石英脉产出，形成时代较老，与变质热液型金矿难以区分，在野外较难鉴别。这类金矿床以含金石英脉为主，脉中含金矿物含量多为1～2%，金品位一般较低，且矿石类型多样，常见的有石英脉型、石英脉－硫化物型、石英脉－黄铁矿型等。

4. 重晶岩浆热液型金矿

系指含金的沉积或火山一沉积岩在地壳一定深度下发生重晶，一部分金和其他金属在重晶岩浆所分异出的热液中集中富集成矿。这类金矿床在本区亦分布广泛，主要呈含金石英脉产出，形成时代较老，与变质热液型金矿难以区分，在野外较难鉴别。这类金矿床以含金石英脉为主，脉中含金矿物含量多为1～2%，金品位一般较低，且矿石类型多样，常见的有石英脉型、石英脉－硫化物型、石英脉－黄铁矿型等。

5. 火山热液型金矿

系指以绿岩带为基底的火山岩中的热液脉状金矿。这类金矿床主要分布于本区的东北部，成矿时代主要为燕山期。矿石金属矿物组合与火成岩有关，如黄铁矿、磁铁矿、石英等。

6. 变生金型金矿

系指一个金矿床经过长期多阶段和多种成矿作用的叠加而形成的一类复杂金矿床。多生金矿床往往形成规模比较大的金矿床或矿田，本区著名的文安农金矿和金厂峪金矿可能属于此种类型。从它们某些矿体的矿石组合分析，某些矿段的矿物组合特征与变质作用有关。金矿床的形成与区域变质作用密切相关，其中的矿石类型多为变质热液型金矿。

而燕山期金矿床主要为热液型金矿，矿体多为脉状，主要由含金石英脉或石英－硫化物脉组成。成矿作用一般认为是燕山期热液作用形成的。

成矿控制因素

1. 矿源层

太古宙绿岩带火山岩沉积建造含金丰富是全球性的特点。本区绿岩带也是如此。从图1可见，大大小小金矿大多围绕绿岩带分布，而一些非绿岩或绿岩不发育的地区，如内蒙古的集宁群、河北的深县群和单塔子群，辽宁的鞍山群等则为金矿带。从图1可见，金矿带分布主要受火山岩和太古宙绿岩带的控制作用。总结：太古宙绿岩带建造对金矿分布的控制作用在宏观上是非常显著的。
岩石特别是基性岩类，金的丰度值普遍较高，比平均克拉克值（3.5ppb）高出几至几十倍（表1）。这说明该区域岩矿化是形成金矿床的原始源岩层之一，太古宙时期火山喷发后带来的热量及水热活动，对火山喷气式沉积金矿有重要影响。大量金矿是在后来的各种地质作用下经过活化、迁移、富集而形成的。但矿源层是成矿的先决条件，是本区各类型金矿形成的主要物质基础。

表1 几个地区含金层位金的丰度值

<table>
<thead>
<tr>
<th>地区</th>
<th>矿化层位</th>
<th>岩石名称</th>
<th>样数</th>
<th>平均值（ppb）</th>
<th>与地表平均值（3.5ppb）比较</th>
<th>资料来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>峡皮沟地区</td>
<td>龙岗三等组</td>
<td>角闪晶、斜长角闪岩</td>
<td>117</td>
<td>117</td>
<td>33（倍）</td>
<td>吉林省地质研究所，1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>条带状混合岩</td>
<td>37</td>
<td>18</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>均质混合岩</td>
<td>3</td>
<td>3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>混合花岗岩</td>
<td>2</td>
<td>2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>峡皮沟地区</td>
<td>建平小塔子沟组</td>
<td>斜长角闪片麻岩</td>
<td>16</td>
<td>280</td>
<td>80</td>
<td>吉林省地质研究所，1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>角闪长片麻岩</td>
<td>29</td>
<td>10</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>混合岩化斜角片麻岩</td>
<td>4</td>
<td>415</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>均质混合岩</td>
<td>10</td>
<td>412</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>太平山地区</td>
<td>河西</td>
<td>斜长角闪岩</td>
<td>830</td>
<td>830</td>
<td>237</td>
<td>河北省地质局第二地质队，1979</td>
</tr>
<tr>
<td></td>
<td>河西</td>
<td>混合岩化斜长角闪岩</td>
<td>270</td>
<td>270</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>河西</td>
<td>斜长角闪岩</td>
<td>300</td>
<td>300</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>河西</td>
<td>混合岩化斜长角闪岩</td>
<td>110</td>
<td>110</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>张家口地区</td>
<td>庆礼</td>
<td>小营盘</td>
<td>108</td>
<td>8</td>
<td>2.3</td>
<td>河北省地质局第三地质队，1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>麻粒岩</td>
<td>1.4</td>
<td>1.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>混合岩</td>
<td>9</td>
<td>9</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>形变岩</td>
<td>11.4</td>
<td>11.4</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>混合岩</td>
<td>5.9</td>
<td>5.9</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>小营盘</td>
<td>15.8</td>
<td>15.8</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

图2 峡皮沟金矿分布图

2. 构造条件

本区绝大多数金矿是呈各种体状产出，是由各种热液作用而形成的后生矿床，因而构造控制十分明显。从大范围看，地表界线所切向长期发育的深断裂带控制了全区成矿带的展布，中生代地台区的发育及火山活动为矿化提供了有利条件。从矿床分布范围看，金矿的展布主要受次一级构造的控制，如峡皮沟矿床受北西向一条弧形大断裂的控制（图2）。小营盘矿床主要受北西向一组平行断裂的控制（图3）。金厂峪矿床主要受北东向断裂带的控制（图4）。矿脉的形态和规模受控于成矿构造性质的影响更为明显。韧性剪切带、层间破碎带等控制的矿体一般较大，呈层状或脉状，较稳定，而依断裂带所控制的矿体一般较小，呈柱状或条状，火山机构所控制的矿体一般比较小，呈多
种复杂的脉状和网脉状。

3. 变质作用条件

变质作用是矿物重结晶和重组合的过程，岩石中含水量逐渐减少，原有矿物不断消失，新矿物不断形成，原来矿物岩石中的活动性杂质元素被释放出来进入热液。变质作用越深，组分的改变和再分配程度越高，金等成矿元素的活化转移就越多。当变质热液中聚集的成矿元素多了就形成了含矿变质热液。这些含矿热液沿构造裂隙运动，在适宜的物理化学条件下沉积成矿。绿岩火山一沉积岩系中含金丰富，当遭受区域变质时，即可形成众多的变质热液型金矿。

据国内外文献报道，变质相对金矿控制有重要意义。认为金的活化转移是受岩浆变质相变控制，金矿化主要是在绿片岩相中。但从本区金矿分布的情况分析，这种现象并不明显，各种变质相均有重要金矿产出。而变质作用似乎对金的矿化具有更重要的意义。很多金矿是沿变质带分布的。据野外观察，变质作用往往是在由变质岩带作带引起。在剪切应力的作用下，一方面造成低应力，而有利于含矿溶液的沉混，另一方面由于应力作用，可使元素的活化能增强。在变质热液的参与下，它们更易从变质岩石中活化转移出来。所以变质变质往往使金矿的集中矿化。

4. 岩浆作用条件

与金矿床有关的岩浆作用和岩浆岩可分为三种情况。

①混合岩化和花岗岩化作用。当绿岩系在超变质条件下由深部上升的岩浆对其进行交代和重熔时，可形成一系列的混合岩类和混合花岗岩。在此过程中，金一般趋于集中，但在一定条件下，金可以活化转移至混合岩化热液中集中出来，而后在适合的构造条件下形成金矿。因此在大面积混合花岗岩分布区金矿较少，而在混合岩化较弱的地区金矿分布较多。

②重熔岩浆作用。当绿岩系下星状体地壳深部，达到一定温度条件下即发生重熔或部分熔融，当这些重熔岩浆沿构造薄弱带向上，即可形成重熔型花岗质岩石。在此过程中，金等金属元素可活化转移集中至热液中，而后在适宜的构造条件下沉淀成矿。

③火山作用。火山岩浆一般来自地壳深层或上地幔，但在上升喷出地表过程中可同化一部分围岩
形成的同源型岩浆。如果围岩为绿岩建造，则所形成的火山热液含金较富，且有利的构造，特别是火山机构中即可形成火山热液型金矿。

金的地球化学历史演化

金在地壳中属分散性稀少元素，平均丰度值为0.0035ppm，岩浆岩中的丰度值是地质性程度的增高而增高（表2）。

<table>
<thead>
<tr>
<th>岩石</th>
<th>花岗岩类</th>
<th>花岗基岩类</th>
<th>隶长岩类</th>
<th>花岗岩类</th>
<th>橄榄岩类</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均含量（ppb）</td>
<td>1.70</td>
<td>3.00</td>
<td>3.20</td>
<td>4.80</td>
<td>6.60</td>
</tr>
<tr>
<td>样品数</td>
<td>310</td>
<td>308</td>
<td>218</td>
<td>508</td>
<td>149</td>
</tr>
</tbody>
</table>

表2

由于金的极高电离度和化学稳定性，在岩浆结晶过程中，不参与硅酸盐的晶格，也不呈类质同象，而是以自然元素状态被充填或吸附于硅酸盐矿物晶格的空穴中。因而在岩浆结晶过程中金处于分散状态而不发生富集。而只有在岩浆作用后或岩石遭受变质作用、超变质作用及构造作用等，在水和挥发组分大量增加的情况下，金进入溶液形成含金的热液时才能发生富集和成矿。而且由于金的富集

系数>1000，即成矿需比平均克拉克值高出千倍以上，因此往往要在多年地壳作用、多次热液活动下，金才能一次一次地迁移富集而成矿。本区金矿成矿作用的长期性、多期性、多元性，以及金在成矿作用中特殊性及变质相的关系，是金的这种地球化学行为的表现。

在太古代时期，由于地壳薄，热流值高，很不稳定，因此火山喷发作用非常频繁，基性超基性岩浆至中酸性岩浆及火山碎屑岩在海底分布广泛，并伴随硅质、粉砂质和硅质的沉积，就形成了本区自西向东分布的绿岩建造。在火山岩中特别是基性超基性岩中普遍含金，构成了本区含金的原始成矿源。此外，在火山活动中常伴有火山喷气作用，这种火山喷气形成有大量金属元素和挥发性组分，如Ag、Au、Pb、Zn、Hg、Cl、S、K、Na等。当遇到冷的海水，温度骤然降低，即发生沉淀作用，形成层状的块状硫化矿物床和金矿床，红透山铜矿和龙山金矿均大体上是在这种情况下形成的。

绿岩形成以后，本区发生了大规模的区域变质作用，致使各种火山一沉积岩石经受由绿片岩相到角闪岩相至黑云母岩相的变质作用。伴随变质作用也发生了强烈的构造变形作用，从而形成了本区复杂多样的变质杂岩。在剧烈的区域变质和变形过程中，原岩中各各种状态存在的水，如层间水、裂隙水、残余水等，吸水、结晶水等发生的造化，逐渐汇集，最后形成了有较高溶解能力的变质热液。这些变质热液沿着岩石中的孔隙、裂缝运动，可使岩石中的硫化物、卤化物以及一些成矿元素如金、银等活化溶解其中，从而形成含金变质热液。

金在低温低压的适宜构造部位沉积富集成矿，形成变质热液型金矿床。

在区域变质作用后期，热液继续升高的情况下，由于地幔的去硫、去硅和排气作用，逐渐形成富Fe、Ca、Si、H2O的岩浆，沿着断裂或微裂隙渗透交代变质岩，或使变质岩中的低熔矿物发生选择性重熔和分异，形成各种混合岩。在这样大规模混合岩化作用的晚期，从混合岩中留下来的岩石中活化释放出来的水、挥发分、金等金属元素和其他组分，逐渐聚集成一定的混合岩化热液而形成混合岩化热液型金矿床，当压力降低，温度下降至400℃以下时，在适宜的构造裂隙中沉积富集成矿，形成混合岩化热液金矿床。

由于金的极高电离度和化学稳定性，在岩浆结晶过程中，不参与硅酸盐的晶格，也不呈类质同象，而是以自然元素状态被充填或吸附于硅酸盐矿物晶格的空穴中。因而在岩浆结晶过程中金处于分散状态而不发生富集。而只有在岩浆作用后或岩石遭受变质作用、超变质作用及构造作用等，在水和挥发组分大量增加的情况下，金进入溶液形成含金的热液时才能发生富集和成矿。而且由于金的富集
到了中生代，由于太平洋板块向欧亚大陆推挤，导致中国东部大陆化，从而发生了强烈的断裂构造和岩浆活动，本区东部燕山地区尤为剧烈。有些变质的绿岩再次遭受重熔成为热液岩浆，或喷发至地表形成火山岩或侵入地下形成侵入岩，原分散于绿岩带的金大量进入岩浆，然后逐渐集中于岩浆期后热液，从而形成众多的深成岩浆热液金矿和浅成火山热液金矿。

综上所述，在本区地质历史中金的地球化学演化，可概括为表3。

本文感谢周教授和张凤祥高级工程师审阅，并提出宝贵意见，特此致以谢意。

参考文献

| [1] | 中国科学院地质研究所，中国东北地区的地壳演化，科学出版社，1980 |
| [5] | 刘平，地质与勘探，1985，第5期 |

【6】母国生，中国地质科学院编，湖南地矿，1982，第1期
【7】王若瑶等，中国科学，1983，第5期
【8】耿亦方，中国地质科学院地质研究所，中国科学，1983，第5号
【9】李庆辉，中国地质，1983，第4期
【10】王锐亚，中国地质，1983，第7期
【11】张秋生等，《中国太古期变质带及成矿作用》，吉林人民出版社，1984
【12】钱祥麟等，中国科学，1985
【13】程裕祯等，《中国太古界地壳演化》，地质出版社，1986
【14】李正军等，中国太古界地壳演化，地质出版社，1986
【15】杨炯明等，中国太古界地壳演化，地质出版社，1986
【16】王修敏，上海地质科学，1986，第4期
【17】Condie，K. C.，Archean Greenstone Belts，Elsevier，Amsterdam，1981
【18】Boyle，R. W.，The Geochemistry of Gold and its Deposits，1979，pp. 390—428

The Greenstone Belt and the Evolution Series of Gold Deposits at the Northern Margin of the North China Platform

Wang Shiqi

The Precambrian greenstone belts are widespread in the northern margin of the North China Platform, and characterized by no ultramafic rocks developed; absence of turbidite and molasse; strongly metamorphosed, tectonically deformed, small in area the ore bodies; and so on, for reason of the large activity of the North China Platform. In the greenstone belt gold ores have a wide distribution. According to the genetic classification of ore deposits in our country one can distinguish: sediment metamorphic; metamorphogenic hydrothermal, migmatized hydrothermal; magmas hydothermal and tectonoped. The mineralization evolution series consists of multi-phase, multiple genetic, multiple mineralization types ore deposits associated with each other, with greenstone formation as their primary source bed.